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Abstract 

In this study, rotating long thick-walled fiber reinforced composite cylinders with closed ends are investigated 
within the elastic limits by using analytical methods. Hoffman yield criterion is employed to the elastic problem to 
find limit angular velocities. Composite bodies of the cylinders are consisting of isotropic matrix and transversely 
isotropic fibers which are unidirectionally aligned in the circumferential direction. Alterations on the elastic stress 
and displacement fields are examined by taking various fiber volume fraction and wall thickness values. Obtained 
results emphasize that both parameters highly influence the distributions of stress, displacement, and 
commencement of the yielding. 
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1. Introduction 

In many engineering applications, cylindrical components such as disks, cylinders, and rods are 
often utilized. Hence, it is highly crucial to forecast stress and displacement distributions in 
such geometries. According to the developments in material science and the needs in 
engineering, axisymmetric components have started to be produced from different materials. 
Fiber reinforced composites have become exceedingly popular among scientists and engineers 
due to the advantageous material properties. In this regard, stress analyses of axisymmetric 
components, which are made of different materials, under various loading conditions can be 
found extensively in the literature. Stress analyses of rotating functionally graded material 
(fgm) disks have been broadly examined by the use of analytical and numerical methods [1-5]. 
Deformations and stresses of pressurized fgm cylinders and tubes can be found in the 
publications as well [6-10]. Similar studies are also carried out for orthotropic cylindrical 
structures. Rotating orthotropic disks have been the subject of various engineering studies [11-
14]. Likewise, solutions have been proposed to orthotropic cylinder investigations with [15,16] 
or without [17,18] the influence of thermal stresses. Several studies focus on composite disks 
as well. Stress and displacement fields of solid, annular, and variable thickness rotating fiber 
reinforced disks are available [19-21]. On the other hand, the number of researches for the fiber 
reinforced disks and cylinders is lower than the same geometries made of functionally graded 
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or orthotropic materials. Thus, this study is aiming to give more insight into fiber reinforced 
cylinders by employing analytical methods. 

In this research, rotating long thick-walled composite cylinders with fixed ends are studied in 
the framework of elasticity. The composite material of the cylinders consisting of isotropic 
matrix and transversely isotropic fibers. The alignment of the fibers is taken unidirectionally 
through the circumferential direction. Thus, the circumferential direction becomes the 
longitudinal (L) direction, and the remaining radial and axial directions of the cylinders turn out 
to be the transverse (T) directions. In Fig. 1 (a), these directions and the composite cylinders 
are visualized. In Fig. 1 (b), fiber reinforced composite material is demonstrated with the 
material coordinate system. Correspondingly, lower case l and t point to the longitudinal (fiber) 
and transverse directions of the composite material, where m and f denote matrix and fibers as 
well. In the elastic limit calculations, Hoffman yield criterion [22] is exploited to obtain elastic 
limit angular velocity and commencement of the yielding through the thickness of the cylinders. 

 
Fig.1. (a) Rotating cylinders with central hole, (b) Composite material 

2. Mechanical Property Calculations 

Several models can be supplied from the literature to calculate the mechanical properties of the 
fiber reinforced composites. In the present work, Chamis method [23,24] is utilized due to its 
usefulness and simple implementation. 𝑉" and 𝑉# denote the volume fraction of the matrix and 
fibers in Eq.(1).      

 𝑉" = 1 − 𝑉# (1) 

Elastic modulus of the composite material in the longitudinal (𝐸() and transverse (𝐸)) directions 
are calculated via Eqs.(2)-(3) 

 𝐸( = 𝑉#𝐸*# + 𝑉"𝐸" (2) 

 					𝐸) =
-.

/0 12	(/0
4.
452

)
	  (3) 

where 𝐸*# and 𝐸7# express elastic modulus of the transversely isotropic fibers in the longitudinal 
and transverse directions. 𝐸" is the elastic modulus of the matrix. Followingly, Poisson’s ratios 
of the composite material in different directions (𝜐(), 𝜐)(, 𝜐))) are presented 

 𝜐() = 𝑉#𝜐*7# + 𝑉"𝜐" (4) 
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 𝜐)( = 𝜐()
𝐸)
𝐸(

 (5) 

 𝜐)) = 𝑉#𝜐77#	 + 𝑉"(2𝜐" −	𝜐)() (6)    

in which 𝜐*7# and 𝜐77#	are the Poisson’s ratios of the fibers in l-t and t-t directions. Poisson’s 
ratio of the isotropic matrix is indicated with 𝜐". In the following equation, density of the 
composite (𝜌) is calculated where 𝜌# and 𝜌" signify density of the fibers and matrix 

 𝜌 = 𝑉#𝜌# + 𝑉"𝜌" (7) 

According to the fiber failure mode, such as micro buckling or fracture due to shear, there are 
many different models to estimate the elastic limits of the composite materials in different 
directions. In this study, the models proposed by Chamis to estimate the tensile and compressive 
strength of the composite are used for convenience.  In this regard, the longitudinal tensile (𝐿)) 
and compressive (𝐿=) strength of the composite are calculated by Eq.(8) and Eq.(9) 

 𝐿) = 𝑉#𝐿7# (8) 

 𝐿= = 𝑉#𝐿=# (9) 

in which 𝐿7# and 𝐿=# are the longitudinal tensile and compressive strength of the fibers. 
Transverse tensile (𝑇)) and compressive (𝑇?) strengths are as follows  

 𝑇) = 𝑇7"[1 − ( 𝑉# 	− 𝑉#)(1 −
𝐸"
𝐸7#

)] (10) 

 𝑇? = 𝑇="[1 − ( 𝑉# 	− 𝑉#)(1 −
𝐸"
𝐸7#

)] (11) 

in Eqs.(10)-(11), terms that are titled as 𝑇7" and 𝑇=" express tensile and compressive strengths 
of the matrix material.  

3. Analytical Solution 

In order to define elastic relations, cylindrical polar coordinate system (𝑟, 𝜃, 𝑧) is exploited. 
Radial, tangential, and axial elastic strains are given below 

 	𝜀F =
𝑑𝑢F(𝑟)
𝑑𝑟

, 𝜀I =
𝑢F(𝑟)
𝑟

, 𝜀J = 0 (12) 

where 𝑢F(𝑟) is the radial displacement. Due to the axial symmetry of the cylinders, 
displacement is function of 𝑟 only. In addition, the axial strain is equal to zero since the ends of 
the cylinders are considered as fixed. As can be noticed, strain-displacement relation is defined 
at Eq.(12), and the composite material properties are calculated in the above section.  Under 
these conditions, strain-stress relation can be determined adequately. Recalling from the 
definition of the problem that the fibers are unidirectionally aligned in the circumferential 
direction, and the remaining radial and axial directions of the cylinders are taken as transverse. 
These considerations yield to the following compliance matrix, which portrays the strain-stress 
relation 
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𝜀F
𝜀I
𝜀J

=

			
1
𝐸)

−
𝜐()
𝐸(

−
𝜐))
𝐸)

−
𝜐)(
𝐸)

			
1
𝐸(

−
𝜐)(
𝐸)

−
𝜐))
𝐸)

−
𝜐()
𝐸(

			
1
𝐸)

𝜎F
𝜎I
𝜎J

 (13) 

in which 𝜎F, 𝜎I and 𝜎J express radial, tangential, and axial stresses respectively. 
Correspondingly, elastic stress-strain relation is obtained with the indicated below stiffness 
matrix   

 

𝜎F
𝜎I
𝜎J

=

			
1 − 𝜐()𝜐)(
𝐸(𝐸)∆

𝜐() 1 + 𝜐))
𝐸(𝐸)∆

𝜐)) + 𝜐()𝜐)(
𝐸(𝐸)∆

𝜐)( 1 + 𝜐))
𝐸)N∆

			
1 − 𝜐))N

𝐸)N∆
𝜐)( 1 + 𝜐))

𝐸)N∆
𝜐)) + 𝜐()𝜐)(

𝐸(𝐸)∆
𝜐)( 1 + 𝜐))

𝐸(𝐸)∆
		
1 − 𝜐()𝜐)(
𝐸(𝐸)∆

𝜀F
𝜀I
𝜀J

,	 

∆=
(1 + 𝜐)))(1 − 𝜐)) − 2𝜐O)𝜐)O)

𝐸O𝐸)N
 

(14) 

It is to be remarked that both compliance and stiffness matrices are symmetrical and obey 
Hook’s law. In the following, the compatibility condition for the elastic problem is given   

 𝑟
𝑑𝜀I
𝑑𝑟

+ 𝜀I − 𝜀F = 0 (15) 

The compatibility condition is fulfilled by substituting radial and tangential strains given in 
Eq.(12) to the above equation. The non-trivial equilibrium equation for this problem is of the 
form 

 
𝑑𝜎F
𝑑𝑟

+
1
𝑟
(𝜎F − 𝜎I) + 𝜌𝜔N𝑟 = 0 (16) 

where 𝜔 is the angular velocity. To be able to solve Eq.(16), initially, directional strain terms 
presented in Eq.(12) should be substituted into Eq.(14). Followingly, elastic stresses in Eq.(14) 
are substituted to Eq.(16). After several algebraic procedures, a non-homogeneous Cauchy 
Euler type differential equation is obtained 

 𝑟N
𝑑𝑢FN

𝑑𝑟N
+ 𝑟

𝑢F
𝑑𝑟

−
𝑠NN
𝑠//

𝑢F = −
𝜌𝜔N

𝑠//
𝑟R (17) 

𝑠ST	(𝑖, 𝑗 = 1,2,3) terms used above are the terms of the stiffness matrix given in Eq.(14).  In 
order to solve the homogeneous part of the above differential equation, in other words, the left-
hand side of Eq.(17), we may propose a solution as 𝑢F = 𝑟X in which 𝜆 is an unknown constant. 
Successively, 𝑢FZ = 𝜆𝑟X0/ and 𝑢FZZ = 𝜆(𝜆 − 1)𝑟X0N where the superscript (‘) denotes the 
derivative. By substituting 𝑢F, 𝑢FZ  and 𝑢FZZ into Eq.(17) and setting the right-hand side of the 
equation as zero, we obtain the homogeneous solution of Eq.(17) which is named 𝑢[(𝑟) 
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 𝑢[ 𝑟 = 𝐶/𝑟0]^ + 𝐶N𝑟]^, and 𝛼/ =
`aa
`^^

= -b(/0cdda)
-d(/0cbdcdb)

  (18) 

In the above equation, 𝐶/ and 𝐶N are the arbitrary constants. The next step is finding the 
particular solution (𝑢e(𝑟)) of Eq.(17). The method of variation of parameters is employed for 
this purpose.   

 𝑢e(𝑟) = 𝑄/ 𝑟 𝑢/ 𝑟 + 𝑄N 𝑟 𝑢N 𝑟  (19) 

𝑢/ and 𝑢N are the two homogeneous solutions of Eq.(17) which are equal to	𝑟0]^ and 𝑟]^ 
respectively  

 𝑄/ 𝑟 = −
𝑃 𝑟 𝑢N

𝑢/𝑢NZ − 𝑢/Z 𝑢N
𝑑𝑟, 𝑄N 𝑟 = 		

𝑃 𝑟 𝑢/
𝑢/𝑢NZ − 𝑢/Z 𝑢N

𝑑𝑟			 (20) 

in which 𝑃 𝑟 = −(𝜌𝜔N/𝑠//)𝑟. 𝑃 𝑟  is simply found by dividing Eq.(17) with 𝑟N and taking 
the right-hand side of the remaining equation. To be able to utilize the method of variation of 
parameters, the coefficient of the highest order derivative must be 1. The particular solution of 
Eq.(17) takes the below form after these mathematical operations 

 𝑢e 𝑟 = 𝛼N𝑟R, 𝛼N =
ija

`aa0k`^^
= ∆-b-daija	

-b /0cdda 0k-d(/0cbdcdb)
  (21) 

Finally, radial displacements of the composite cylinders are achieved by adding the 
homogeneous and particular solutions stated in Eq.(18) and Eq.(21) 

 𝑢F 𝑟 = 𝐶/𝑟0]^ + 𝐶N𝑟]^ + 𝛼N𝑟R (22) 

Directional elastic strains can be written of the form by applying Eq.(12) to the above equation 

 𝜀F 𝑟 = −𝐶/𝛼/𝑟0]^0/ + 𝐶N𝛼/𝑟]^0/ + 3𝛼N𝑟N (23) 

 𝜀I 𝑟 = 𝐶/𝑟0]^0/ + 𝐶N𝑟]^0/ + 𝛼N𝑟N (24) 

It should be reminded that due to the fixed ends of the geometry, the axial strain is equal to 
zero. Subsequently, if Eq.(23) and Eq.(24) are implemented to Eq.(14), directional elastic 
stresses become 

 𝜎F 𝑟 = −𝐶/𝑟0]^0/ 𝛼/𝑠// − 𝑠/N + 𝐶N𝑟]^0/(𝛼/𝑠// + 𝑠/N) + 𝛼N𝑟N(3𝑠// + 𝑠/N) (25) 

 𝜎I 𝑟 = −𝐶/𝑟0]^0/ 𝛼/𝑠N/ − 𝑠NN + 𝐶N𝑟]^0/(𝛼/𝑠N/ + 𝑠NN) + 𝛼N𝑟N(3𝑠N/ + 𝑠NN) (26) 

 𝜎J 𝑟 = −𝐶/𝑟0]^0/ 𝛼/𝑠R/ − 𝑠RN + 𝐶N𝑟]^0/ 𝛼/𝑠R/ + 𝑠RN + 𝛼N𝑟N(3𝑠R/ + 𝑠RN) (27) 

in which 𝑠ST terms, once again, express the components of the stiffness matrix in Eq.(14). In the 
case of rotating cylinders with central holes, 𝐶/ and 𝐶N are found by the following boundary 
conditions  

 𝜎F 𝑎 = 0, 𝜎F(𝑏) = 0 (28) 
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in which 𝑎 and 𝑏 present inner and outer radii of the cylinders. If the boundary conditions are 
exerted to Eq.(25), arbitrary constants can be carried out  

 𝐶/ =
𝛼N(𝑎N]^𝑏Rn]^ − 𝑎Rn]^𝑏N]^)(3𝑠// + 𝑠/N)

(𝑎N]^ − 𝑏N]^)(𝛼/𝑠// − 𝑠/N)
 (29) 

 
𝐶N = −

𝛼N(𝑎Rn]^o𝑏Rn]^)(3𝑠// + 𝑠/N)
(𝑎N]^ − 𝑏N]^)(𝛼/𝑠// + 𝑠/N)

 
(30) 

As previously stated, Hoffman yield criterion is employed to calculate the elastic limits of the 
cylinders. The general form of the corresponding criterion in principal directions is  

 

				/
N
− /
pdpq

+ /
rdrq

+ /
sdsq

𝜎I − 𝜎J N + /
N

/
pdpq

− /
rdrq

+ /
sdsq

𝜎J − 𝜎F N +

			/
N

/
pdpq

+ /
rdrq

− /
sdsq

𝜎F − 𝜎I N + /
pd
− /

pq
𝜎F +

/
rd
− /

rq
𝜎I +

					 /
sd
− /

sq
𝜎J ≤ 1  

(31) 

at Eq.(31), X, Y, Z express the yield strength of the material at the corresponding direction, and 
the subscripts T and C clarify either the load is tensile or compressive. In-between equations 
Eqs.(8)-(11), composite material strengths have previously been introduced. By operating 
Eq.(8) to Eq.(11) with Eq.(31), Hoffman yield criteria can be adapted to this case 

 
𝜎r 𝑟 =

1
2𝐿)𝐿?

𝜎I − 𝜎J N + 𝜎F − 𝜎I N +
1
2

2
𝑇)𝑇?

−
1

𝐿)𝐿?
𝜎J − 𝜎F N

+
1
𝑇)
−
1
𝑇?

𝜎F + 𝜎J +
1
𝐿)
−
1
𝐿?

𝜎I ≤ 1 
(32) 

Eq.(32) is the corresponding yield criteria, which is named 𝜎r(𝑟) and is going to be used to find 
the elastic limit angular velocity of the cylinders. If the value of the obtained 𝜔 is exceeded, 
then the elastic region gets exited. In other words, from Eq.(12) to this point, all elastic 
equations are valid as long as 𝜎r(𝑟) ≤ 1. Thus, limit angular velocity values are obtained when 
𝜎r(𝑟) = 1. 

3. Numerical Examples 

After analytical modeling, to exemplify numerical results, dimensions of the composite 
cylinders and the properties of the cylinder material are assigned. In this regard, to understand 
how the wall thickness of the cylinders changes the distribution of the elastic stresses, outer 
radii (𝑏) of the cylinders are kept constant as 0.1 m, and various inner radii (𝑎) values (0.02 
m,0.05 m, 0.08 m) are taken. So that the inner/outer radius ratio (𝑎/𝑏) becomes 0.2, 0.5 and 0.8 
respectively. As the fiber reinforced composite, graphite/epoxy is used. Properties of the epoxy 
and transversely isotropic graphite fibers are tabulated below 

 
Table 1. Mechanical Properties of the Epoxy and Graphite Fibers [25] 

𝑇=" 
 

𝑇7" 
 

𝐿=# 
 

𝐿7# 
 

𝜌" 
 

𝜌# 
 

𝜐" 
 

𝜐77# 
 

𝜐*7# 
 

	𝐸" 
 

𝐸7# 
 

𝐸*# 
 

(𝑀𝑃𝑎) (𝑀𝑃𝑎) (𝑀𝑃𝑎) (𝑀𝑃𝑎) (
𝑘𝑔
𝑚R) (

𝑘𝑔
𝑚R) (−) (−) (−) (𝐺𝑃𝑎) (𝐺𝑃𝑎) (𝐺𝑃𝑎) 

102 72 1999 2067 1200 1800 0.30 0.35 0.30 3.4 22 230 
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Material properties are obtained for three different fiber volume fraction values (𝑉# = 0.20, 
0.50, 0.80) via operating Chamis method, which is given from (1) to (11), with the properties 
in Table 1. Accordingly, one can investigate the influences of 𝑉# on the elastic stress and 
displacement fields. At this stage, variables are transformed to their normalized forms which 
are expressed with overbars. Hence, radial coordinate is 𝑟 = 𝑟/𝑏. Directional stresses take the 
following forms 𝜎T(𝑟) = 𝜎T(𝑟)/𝜎| where 𝑗 = 𝑟, 𝜃, 𝑧 and the yield stress is  𝜎r(𝑟) = 𝜎r(𝑟). 
Normalized angular velocity can be written as 𝜔 = 𝜔𝑏 𝜌|/𝜎|. Non-dimensional radial 
displacement is transformed to 𝑢F(𝑟) = 𝑢F(𝑟)𝐸|/𝜎|𝑏. Lastly, arbitrary constant are of the 
following 𝐶/ = 𝐶//𝑏/n]^ and 𝐶N = 𝐶N/𝑏/0]^. In the normalization procedure 𝜎|, 𝐸| and 𝜌| 
are introduced. These constants are as follows 

 𝜎| =
/
}

((52n(~2n)5.n)~.
}

)N, 𝐸| =
/
R

(-�2n-52n	-.
R

)N and 𝜌| =
i2ni.

N
 (33) 

After the boundary conditions stated in Eq.(29) and Eq.(30) are employed to stresses and 
displacements, elastic limit angular velocity and the beginning of the yielding are calculated by 
the use of Eq.(32). The results obtained for various 𝑎/𝑏 and 𝑉# are exhibited in Table 2. It is to 
be noted that the position of the yielding is denoted with 𝑟r in Table 2 

 
Table 2. Calculated dimensionless arbitrary constants, elastic limit angular velocities and position of 

the yielding for various 𝑉#  and 𝑎/𝑏  
  	𝑉# = 0.20   𝑉# = 0.50     𝑉# = 0.80 
 𝐶/ 6-6.67953x10 7-7.69944x10 7-4.93349x10 

𝑎/𝑏 = 0.2 𝐶N 0.0341764 -0.0388193 -0.0243708 
 𝑟r 0.618322 0.645025 0.634944 
 𝜔 1.56408 1.8232 1.84966 
 𝐶/ 0.000354862 0.000141208 0.000103404 

𝑎/𝑏 = 0.5 𝐶N 0.0316035 -0.0445137 -0.0298333 
 𝑟r 0.5 0.720314 0.722186 
 𝜔 1.49828 1.95469 2.04922 
 𝐶/ 0.001605 0.00120456 0.00109806 

𝑎/𝑏 = 0.8 𝐶N 0.0263474 -0.0435268 -0.0351421 
 𝑟r 0.8 0.8 0.8 
 𝜔 1.34404 1.95086 2.24789 

 

It is depicted in the results in Table 2 that elastic limit angular velocity increases with higher 
fiber volume fraction. In other words, when the fiber volume fraction elevates, cylinders begin 
yielding at higher strengths. Whereas, it is hard to make a clear statement for the influence of 
the 𝑎/𝑏 ratio. When 𝑉#=0.20 and 𝑎/𝑏 ratio is increasing from 0.20 to 0.80, calculated elastic 
limit angular velocities decreas. On the other hand, when 𝑉#=0.80 and 𝑎/𝑏 ratio rises, composite 
cylinders tend to fail at higher 𝜔. Thus, one can conclude that the wall thickness of the 
composite cylinders should be treated carefully to get optimum results. In order to understand 
this phenomenon, Figure 2 is illustrated below. According to the plotting, when fiber volume 
fraction in the composite is low (𝑉#=0.20), thick-walled cylinders (𝑎/𝑏=0.20) are prone to yield 
at greater 𝜔. However, as 𝑉# increases in the composite, cylinders that have thinner wall-
thickness (𝑎/𝑏=0.80) start plastic flow at higher 𝜔. 
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Fig. 2. Distribution of the elastic limit angular velocity for the cylinders having different 𝑎/𝑏 and 𝑉# 

In the following figures, corresponding elastic stress and displacement fields are presented. As 
can be noticed in Figure 3 (a), (b), and (c), when 𝑎/𝑏=0.2, plastic flow commences in the middle 
of the cylinders. On the other hand, as the thickness of the cylinder walls gets slender, yielding 
begins at the inner radii. For instance, all cylinders begin yielding at 𝑟 = 𝑎 when  𝑎/𝑏=0.8. The 
position of the yielding (𝑟r) is calculated when 𝜎r(𝑟)=1, and the exact position of 𝑟r is given 
in Table 2 

 

Fig. 3. Variation of the dimensionless yield stress along  𝑟 for various 𝑎/𝑏 ratios where (a) 𝑉#=0.20,   
(b) 𝑉#=0.50 and (c) 𝑉#=0.80 
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In the subsequent set of figures, non-dimensional elastic limit radial stresses are presented. It is 
observed from Figure 4 (a), (b), and (c) that radial stresses increase as 𝑉# enlarges for the 
cylinders with the same  𝑎/𝑏 ratio. The graphs below also reveal that the cylinders with higher 
wall thicknesses (𝑎/𝑏=0.2) have higher radial stress compared to the lower ones (𝑎/𝑏=0.8). In 
the ensuing plotting, tangential stresses are exhibited 

 

Fig. 4. Variation of the dimensionless radial stress along  𝑟 for various 𝑎/𝑏 ratios where (a) 𝑉#=0.20, 
(b) 𝑉#=0.50 and (c) 𝑉#=0.80 

 
 
 
 
 
 
 
 
 
 

 

 

 

 
Fig. 5. Variation of the dimensionless tangential stress along  𝑟 for various 𝑎/𝑏 ratios where  

(a) 𝑉#=0.20, (b) 𝑉#=0.50 and (c) 𝑉#=0.80 
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According to Figure 5 (a), (b), and (c), normalized tangential stresses enlarge, when 𝑉#  
amplifies for cylinders with the same 𝑎/𝑏 ratio. On the other hand, while the radial stresses are 
high in the thick-walled cylinders (𝑎/𝑏=0.2), tangential stress components are high in the 
thinner ones (𝑎/𝑏=0.8). Another important issue is that the magnitudes of the elastic limit 
tangential stresses are significantly higher than the radial stresses. In the next figure, axial 
stresses are presented in Figure 6 (a), (b), and (c). Fiber volume fraction slightly influences the 
axial stresses when 𝑎/𝑏=0.2. Conversely, as the wall thickness gets smaller, the effect of 𝑉# 
becomes more apparent and the profiles of the axial stress components tend to skew to the outer 
radii of the cylinders. 

 

Fig. 6. Variation of the dimensionless axial stress along  𝑟 for various 𝑎/𝑏 ratios where (a) 𝑉#=0.20, 
 (b) 𝑉#=0.50 and (c) 𝑉#=0.80 

In the final figure demonstrated below, normalized radial displacements are portrayed. In 
accordance with Figure 7 (a), (b), and (c), radial displacements of the cylinders sharing the same 
𝑎/𝑏 reduce as  𝑉# goes up. For the cylinders having the same 𝑉#, radial displacements are highly 
affected by 𝑎/𝑏. When the cylinders are having narrower walls, the magnitudes of the radial 
displacements are at high levels. However, the radial displacement differences of the inner and 
outer radii of the cylinders become greater in the thick-walled ones. Another remark that should 
be noted is that the distribution profiles of the radial displacements and tangential stresses are 
markedly analogous. The resemblance can be noticed by comparing Figures 5 and 7. 
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Fig. 7. Variation of the dimensionless radial displacement along  𝑟 for various 𝑎/𝑏 ratios where (a) 
𝑉#=0.20, (b) 𝑉#=0.50 and (c) 𝑉#=0.80 

5. Conclusion 

In this study, the rotating fiber reinforced composite cylinders subjected to free-free boundary 
conditions are studied by employing analytical methods. The elastic stress and displacement 
fields are investigated for numerous wall thickness (𝑎/𝑏) and fiber volume (𝑉#) ratios. It has 
been seen that these fields are immensely altered by 𝑎/𝑏 and 𝑉#. Hoffman yield criterion is 
adapted to the problem and elastic limits are obtained accordingly. One can conclude from the 
calculated results that as 𝑉# in the composite increases, yielding initiates at higher angular 
velocities. Whereas, 𝑎/𝑏 ratio should be utilized cautiously. If the wall thickness ratio is not 
selected properly, yielding in the cylinders may occur at lower angular velocities.  The 
commencement of the plastic flow varies according to the assigned 𝑎/𝑏 and 𝑉#. When the 
cylinder walls are thick, yielding tends to begin in the middle of the cylinder walls. However, 
as the wall thickness becomes smaller, yielding starts at the inner radii of the cylinders. Also, 
according to the elastic limit stress and displacement fields that we get, magnitudes of radial 
and axial stresses are considerably small when compared to tangential ones, and as the cylinder 
walls get thinner tangential stress components majorly rise.  
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