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Abstract

In this paper, the size-dependent shear deformable conical shell formulation is derived based on the modified couple
stress theory and first order shear deformation model to investigate the free vibration of functionally graded conical shell
embedded in an elastic Pasternak medium and subjected to thermal environment. The material properties are considered
temperature-dependent and graded in thickness direction according to power law distribution. The governing equations
and boundary conditions are derived using Hamilton’s principle. The size effect is taken into account using the modified
couple stress theory, and, the free vibration of simply supported FG truncated conical nanoshell is investigated as a
special case. The effects of different parameters such as dimensionless length scale parameter, temperature change and
distribution of the nanoshell components on the natural frequency are investigated based on the modified couple stress
theory and classical continuum theory.

Keywords: Thermo-mechanical vibration; First order shear deformation theory; FG conical shell; Modified couple stress
theory.

1. Introduction

Today, nanoscale carbon-based structures such as carbon nanotubes (CNTs), fullerenes and carbon
nanocones (CNCs) have attracted the attention of many researchers thanks to their diverse potential
applications. Early studies on CNCs have been concurrent with studies on CNTs [1-2]; however,
relatively scant attention has been paid to CNCs and their properties. CNCs were initially observed
by Ge and Sattler in 1994 [3] and afterwards, Krishnan demonstrated the presence of five apex
angles of CNCs [4]. In 1999, lijjima et al. built a single-walled CNC [5]. And, various experiments
and studies have to date been conducted to investigate CNC structure [6-7]. So far, carbon nanocones
have attracted the attention of many researchers because of their unique characteristics such as
localization of electrical field in their sharp point which gives them important applications in the
future as high resolution probes in scanning, tunneling, atomic force microscopy and field emission
devices and optical antennas [8-10], and because of their use in drug delivery applications like micro
needles, albeit under open tips, mechanical rigidity and high aspect ratios [11-12]. Since it is difficult
to conduct experimental tests in the nanoscale, the majority of research has so far been done using
molecular dynamics (MD) simulation [13-14]. For example, using MD simulation, Wei et al.
computed the Young’s modulus of a CNC and compared it with that of a corresponding CNT [13].
Today, because MD simulation is a time-consuming procedure especially for macro scale structures,
it has been supplanted by the use of continuum mechanics in the modeling of structures in the
nanoscale. As classical continuum models are unable to make a correct prediction of size-dependent
behaviors happening in micro/nanoscale structures, researchers have attempted to use non-classical
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continuum theories such as non-local elasticity theory, couple stress theory and strain gradient
theory, which take size effect into account in the investigation of micro/nanostructures [15-17]. The
couple stress theory, which contains two higher order material length scale parameters as well as two
Lame constants, was introduced by Mindlin, Toupin, Mindlin and Tiersten, and Koiter in 1960’s [18-
21]. Some researchers, including Anthoine have investigated the pure bending of the circular
cylinder using the couple stress theory [22]. Introducing a new equilibrium equation, equilibrium of
moments of couple, in addition to the classical equilibrium equations of forces and moment of forces,
Yang et al. introduced the modified couple stress theory which incorporates only one higher order
material parameter [23]. Applying this theory, many studies have been conducted using beam, plate
and cylindrical and conical shell models [24-26]. Considering the increasing progress in nano-
science which demands studying and making correct prediction of the behavior of various nano-
structures, it is crucial to use theories such as the first order shear deformation theory which
incorporates the effect of shear strains to make a correct prediction of the behavior of CNCs,
particularly for short and rather thick CNCs. Given the stress variation in the thickness of conical
shell where using FSDT the shear strains and consequently shear stresses are assumed to be constant
in the thickness of the cone, in order to more accurately predict the behavior of CNCs, a correction
coefficient, usually considered to be 5/6, is used [27]. Applying FSDT, many studies have to date
been conducted on nanostructures using various models. For instance, using the modified couple
stress theory and shear cylindrical and conical shell model, Zeighampour et al. studied the effect of
parameters such as length and size effect on the natural frequency of CNTs and CNCs and
demonstrated the increase in natural frequency with the increase in the small scale parameter [28-29].
Today, great attention is paid to the investigation of micro/nanostructure elements made of FG
materials used in microelectronic and micromechanical structures such as shape memory alloys as
thin films and, micro-and nano-electromechanical systems (MEMS and NEMS) and atomic force
microscopes (AFMS) [30-33]. Functionally graded materials with their unique properties which
prevent the concentration of stress, which is the primary cause of breaking in composites due to
sudden inconsistency in material properties have attracted researchers’ attention. To date, many
studies have been conducted on FGMs [34-35]. On the other hand, since the conical shell structures
have wide spread applications in nano-science, due to their unique dynamic behavior, strength and
stability, the study of vibration, bending and buckling behavior is of practical interest for
understanding their mechanical behavior appropriately. Moreover, the study of thermal effect on
mechanical behavior is of great importance which only a limited portion of literature considered this
[36-38]. Considering the above discussion, in this paper, the thermo-mechanical vibration of conical
shell resting on Pasternak elastic medium are investigated by considering the first order shear
deformation shell theory and the modified couple stress theory. Using Hamilton’s principle,
equations of motion as well as classical and non-classical boundary conditions are obtained. Besides,
as a special case, the free vibration of the simply supported FG conical nanoshell is investigated
using the Galerkin method. Based on the power law distribution, material properties variation of FG
CNC are considered according to constituent’s volume fraction along the thickness direction and
temperature-dependent. Finally, the effect of some parameters on natural frequency is examined

2. Preliminaries
2.1. Modified couple stress theory

The modified couple stress theory as one of the higher order continuum theories, having one higher
order material length scale parameter as well as two Lame constants, was initially developed by
Yang et al. [23]. According to this theory, strain energy is expressed as:

1
UZEIQ(GIYSU +mijlij)dV ey

where
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&= %(u,.’j +u;,+ ul,u}’j) (2)
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m, =21z, (5)

In the above equations, &;, oy, i, and m;; represent the components of strain tensor, Cauchy stress
tensor, symmetric rotation gradient tensor and higher order stress tensor, respectively; and u;, ej,
and 7;,, stand for the components of displacement vector, permutation symbol, and deviatoric stretch
gradient tensor. And, in Eq. (5), /, material length scale parameter, is independent and extra.

2.2. Functionally graded material

A FG truncated conical shell at length L and thickness / resting on Pasternak elastic medium is
considered according to Fig. 1. According to a simple power law distribution, volume fraction
variation of metal and ceramics along the thickness of conical shell is expressed as:

Z, W
B

a

Neutral Axis

(3] (6)
V.=1-V,

m

Therefore, the material properties of this conical shell can be expressed as:
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B
a(1)= (o, (1)-a. (D) 2]+ (1)
The material properties are considered temperature-dependent through Touloukian formula [39] as
below:
P(T)=FR,(P.T" +1+ BT + PT* + PT") (8)
where 7' = Ty + AT, Tp = 300K (room temperature) and A7 is the temperature change which is

assumed to be uniform [40] and the coefficients P; (i = 0, -1, 1, 2, 3) are unique to the component
materials.

2.3. Displacement field in the conical shell

Based on the first order shear deformation theory, the three components of displacement field, u, v,
and w are assumed along three x-, 6- and z-axes as follows:
u(x,Q,z,t)=U(x,9,t)+2(//x(x,9,t)
v(x,Q,z,t) =V(x,9,t)+Zl//9 (x,@,t) (9)
w(x,Q, z,t) = W(x,@,t)
In the above equations, U(x,6,f), V(x,0,t) and W(x,6,t) are the displacement of the neutral surface in
the three x, # and z directions, and w(x,6,7) and yy(x,0,¢) are the rotation of a transverse normal about

the axial and circumferential directions. Besides, the position of the neutral surface is determined as
in Ref. [34].

3. Governing equations and boundary conditions

In order to derive the equations of motion and classical and non-classical boundary conditions of the
first order shear deformable truncated conical shell using the modified couple stress theory, first, the
components of classical and non-classical strains are determined by using the displacement field (Eq.
(9)) and utilizing Ref. [29] as below:
U 1 (awjz oy,
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Toox 2\ 0Ox Ox
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Afterwards, classical and non-classical stresses are determined by substituting Egs. (10) and (11) into

the constitutive equations, and strain energy is determined by substituting classical and non-classical
strains and stresses into Eq. (1) as follows:
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where the classical and non-classical forces and moments are defined as:
h-2,
(N ,Ngo, Ny ) ‘[(Gv“,agg,axg)dz
h-2,
(M, .My, M, )= ‘[(oxx,ogg,aw)zdz
h-2,
(0..0.)= [ (0..0,)d (13)
h-2,
(Yxx7Y€€7Y 7Yx€’YJ’Y ) I(m,v,v’mﬁg’m mvﬁ’m m )d
h-2,
(TosTys T T s Ty ) = j(mn,mgg,m Mgy ) 2dz
Kinetic energy of the conical shell is expressed based on Eq. (9) as:
1 ,. ou oy Y (oV oy jz (awjz .
T=— TN —+z—2 | 4| —+z—2 | +| — | |xsinadxdOdz
zip(z )K a - azj (az o o (14)
The work done by Pasternak foundation on the conical shell is computed as:
1 pxo+L p2n ow ? 1 ow : .
W =— -k W+k, || — | + —_— sina dfd.
‘ 2I L[ ”((axj xzsinza(aej]]x ) (15)

where k,, 1s the Winkler constant and 4, is the shear modulus of subgrade.
Now, in order to derive the governing equations and boundary conditions, Hamilton’s principle is
used as follows:
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5T(T—Us+m)dz=o (16)

By substituting strain energy, kinetic energy and the work done by external loads according to Egs.
(12), (14) and (15) into Eq. (16) and integrating by parts, the equations of motion as well as classical
and non-classical boundary conditions are finally derived using the modified couple stress theory as
follows:

2 2 4 4 3 2 Sy 4

6U:A16U+A6—U+AU+A6U+A61Z 62U2+76U2+86—1/4—4)6[/4—10 62 +116V3
ox ox 00? 00 ° ox200 ox00 00 ox00 ox~00 ox00
o'V oV ow o'w o'W oy, oy, oy, o'y,

+A12W+A13 20° + AW+ 45— x AaW"'AH 20° + A o 2 + Ay o LW+ Ay —5-+ N

2 22 4
00
o o o o o o o* o* a7
Ve va, SY¥s g Voo %Yo,y Voo y Vo g Vo oy Vo

+4,—= — + +
Paxo0r  Hoax*ee: P o0 o000 T Taxod T FToaxPod P oaxod P ax’os
o', o’U
+11‘172'+I10 e =0
4 3 2 4 3 2 3
6V:Bl6—I4/+Bza—l3/+836—2/+34 o +B V+B(,a r + B, anz + By 9 Vz +Bga—U+Bma—U+ “6270
Ox Ox Ox Ox 06* 7 ox200 ox00 00 ox00 ox“00
4 4 3 2 3 3 2 3
+31267U3+813637U+Bl4ail{+BlsaiW+Blsal+Bl7aziW+leainj+Bl9 al//x +Bzo 0 Vs + 5y, d W;
%00 ox’00 80 00 &x00 ox°00 80 80 &x00 00 (18)
o'y, Dy, 'y, oy oy oy o'y Py o'y
By ox’00 By 00 B oxo6° B+ B ox St By ox >+ By 6020 + By axzagﬂ * By ox agz By 6x40
Oy oy oV
+B32 0+]1170+ 107:0
ox® © ot " or?
o'W oW N_\ow oW oW N oW oW
W :C,—+(C,—N_.)— +(C3——“j—+c4 —+ 572+( 6—%} —+C,——
ox* ox? x ) Ox Ox ox00 x“sin“a ) 00 ox“00
4 2 2 3
+C8—aw:+C9W—72].v*" aW+ka—k aI/i/+la—W+ ! 6142/ +CU+C,,— v 1276(]2
00 xsina 0x00 1 ox x Ox  x’sin*a 060 6x o0x00 (19)
o’U ov o oV oV oy, oy, oy, oy, oy,
T o T Cugg T e T e T aiag T o T e Ty TG T e
R Oy Oy oy N ow
+Cy, +Cpy ey LyC ’ 1 C 0y —00 4] ,——=0
Wt Cu 50 T 5000 T 000 T Y 00 | xtana | or
oy, oy, oy, Dy, 'y, 'y, oy oy o'y,
oy D5+ D, “ar + Dy + D,y o0 +D, 6x6é2 Gt PP 00t P aeo D50 P g
4 4 3
+D. 6—V + D, 6V + oV +D. oV + i+D oV +D. a—WJrD aW+D 62W+ oW (20)
o0 TPaxo0  Poxodd  Maxtee P00 Coxtoo 7 ox Yot TP o0 o
3 2,
+D,, 66602 + D W +1,, aalz] +1,, aa‘;;x -0
2 4 4
Sy, :E, aa""’ +E, aa"’;) +E, aazlgéz +E, ;;’gz +E, 56!//20 +E, ag/(, +E, ‘;;"2 E, 0+E9§;g;+EIO§(;V§3
X X
4 4 3
By Ve, OV g OV g OV g OU p OU g OU p OU  p OU  p 0U
11 3 2 13 14 15 16 17 P 18 3 19 3 20 3
00 * ox’00 &x00 80 80 %00 8x*00 ox’00 %00 00 @1
v o o o'V oV o'y v ow oW
+E21V+E226 +E2362+E 602 EzstrE%WJrEﬂa4+sza3 E29£+ m%
ow ow o oy
+E ~=0

00 R oer | MaE The e

where in Eq. (19), on the basis of thermal elasticity theory, the thermal force can be written as:
~ (2,T)AT ~ EE(ET)a(5T)AT ~
=Na= J 1—2v 7)) 42, Nog = Nin = J (1—2v(27)) @ Nig =0 (22)
Coefficients A1-439, Bi-B3z, Cl-C27, D)-Ds,, and E-E3; are included in Appendix A.
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4. Shear deformable simply supported FG conical shell
4.1. Governing equations of simply-supported FG conical shell

In order to investigate the free vibration of the simply supported FG conical shell, first one must
determine equations of motion and boundary conditions. Due to the 6 variation between zero and 2,
the equations are only relating to x = constant must exist.
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Coefficients a;-aiq, b1-b11, c1-¢7, di-dis, and ej-e;; are included in Appendix A.
4.2. Solution method

In order to investigate the free vibration of the simply supported FG truncated conical shell,
considering the governing equations and boundary conditions, the displacement field is considered as
[41].

U (x.0.1)=U, cos["”(’;‘m]cos(ne)sm(m)
v (x.0.0)=U, sin[W]sin(ne)sin(wt)
(50.0) = ysin] ") o i) a1
A L

V(50,0 =, sin[W]sin(ne)sin(wz)

where w, m and n represent the natural frequency of the nanotube, and circumferential and axial
wave numbers, respectively. Considering the above displacements, most boundary conditions in Egs.
(23)-(30) are satisfied and only some of them are not fully satisfied. For a complicated formulation in
the references like the above formulation, not all boundary conditions are usually satisfied.
Therefore, by substituting Eq. (31) into Eqgs. (17)-(21) and multiplying the resulting equations by x*
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in order to do simpler integration and use the Galerkin method, the following equations will finally
be obtained:

J-,r0+l_ IOZ”WIXCOS[WJSin adxdf =0
J-WL Ioznwzxsin [m”(z_x")] sina dxdf =0
J-;W‘J.ozn':‘/gxsin[nw] sina dxdf =0 (32)
J-,r0+l_ J~02nw4xcos[m”(z_x°)]sina dxdf =0

J-X“L J.:”'J@x sin [m”(z_x")]sin adxdf =0

where parameters ¥, , T,ff3, 1y, and ws are considered as follows:
=x' I:An (U + AIZ (V ) + A13 (Wo) + A14 (Wx0)+ AIS (l//()o)
2 =X I:AZI +A (V)+A (W)+A ( )+A25(l//00)
Vi =X |:A31 o ( ) ( )+A34(V/o)+A (l//()o)
w4:f[&AUo Ap (Vo) + A (W) + A (W0 + Ais (o)
Vs = x4|:A51(U0 ( ) 53( ) ( ) ss(l//()o)]
In the above equation, 4;; are values obtained by substituting Eq. (31) into Eqgs. (17)-(21). Therefore,
the matrix form of Eq. (32) is expressed as follows:
UO
4
([K]-@*[M]) W, =0 (34)
Vo
L
According to the eigenvalue problem, in order to obtain a non-trivial solution for Eq. (34), the
determinant of coefficients must be set to zero, and, by solving the obtained equation, one can
compute nanoshell frequency.

(33)

4. Results and discussion

In this section, using the obtained shear deformable FG conical shell formulation, the free vibration
of simply supported FG conical nanoshell embedded in Pasternak foundation is investigated based on
the modified couple stress theory and under thermal environment. The material properties of FG
conical shell with dependent temperature in Eq. (8) are listed in Table 1. and are assumed a blend of
Si3N,4 (Ceramic), and SUS304 (metal) [42]. Moreover, the coefficients of thermal expansion are
negative at low temperature and are positive in high temperature [37-38] and the temperature change
at high temperature are assumed to be AT = 50 (K) [36]. The dimensionless natural frequency is
computed based on the @ = wR./ gy, (1 — vy 2)/E, equation.
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Table 1: Tempreature-dependent coefficients for Si;N, and SUS304

Material PI‘OpGI’ty P-] P() P] P2 P3
om (1/K) 0 12.33¢-6  8.086e-4 0 0
E,, (Pa) 0 201.04¢9  3.079¢e-4  -6.534e-7 0
SUS304 Vi 0 0.3262 -2.002¢-4  3.797e-7 0
pm (kg/m?) 0 8166 0 0 0
a. (1/K) 0 5.8723e-6  9.095¢-4 0 0

SiiN. E. (Pa) 0 348.43¢9  -3.07e¢-4 2.16e-7  -8.946e-11
Ve 0 0.24 0 0 0
pe (kg/m®) 0 2370 0 0 0

5.1. Influence of dimensionless length scale parameter

The effects of dimensionless length scale parameter on dimensionless natural frequency based on
both modified couple stress theory and classical continuum theory for three apex angles at high
temperature are shown in Fig. (2). As illustrated, according to both modified couple stress theory and
classical continuum theory with the increase in apex angle, the dimensionless natural frequency
decreases. Besides, according to the modified couple stress theory, decrease in dimensionless length
scale parameter 4//, which is in fact equivalent to increase in length scale parameter, leads to greater
stiffness in the nanoshell, and, finally, results in increased natural frequency in the entire gradient
index (f). Increase in gradient index and decrease in apex angle intensify the effect of this parameter
on natural frequency; in contrast, based on the classical continuum theory, length scale parameter’s
variation has no effect on natural frequency. In addition, as ceramic has a higher modulus than metal,
an increase in gradient index, where £ = 0 is the metal shell and f = o is the ceramic shell, leads to
an increase in natural frequency in all apex angles.

5.2. Influence of dimensionless CNC length parameter

Fig. (3) demonstrates the effects of dimensionless length parameters on the dimensionless natural
frequency for three apex angles in different gradient index in high temperature. In this figure, / = 5h
is considered, and, as illustrated, with the increase in dimensionless length parameter which means
increased length parameter, due to increased nanoshell instability and hence increased deformation,
the natural frequency is decreased, and this decrease is intensified by decrease in apex angle and
increase in gradient index, such that in = 1, with the change of the length parameter from L/R =2
to L/R = 6, the dimensionless natural frequency decreases from 2.9 to 0.6 in 20= 60, and from 2.3 to
0.5 in 2a=123.6. Besides, in 2a =86.6, with the change of the size parameter from L/R =2 to L/R =
6, the dimensionless natural frequency is reduced from 2.5 to 0.53 in f= 1 and from 3.1 to 0.65 in f
=3.
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three apex angles 2a = 60, 2a = 86.6 and 2a = 123.6 in the case of high temperature, a) Classical
continuum theory, b) Modified couple stress theory
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Figure 3: Effect of dimensionless length parameter L/R on dimensionless natural frequency in three
apex angles 2a = 60, 2a = 86.6 and 2a = 123.6 in the case of high temperature.

5.3. Influence of circumferential and axial wave numbers

Figs. (4-5) shows the effects of conical nanoshell thickness as well as circumferential and axial
wavenumbers on dimensionless natural frequency based on the modified couple stress theory and
classical continuum theory in 4// =2, L/R =2 and =1 in three apex angles for m =1 and m = 2 for
the case of high temperature. As it is indicated, an increase in circumferential and axial wavenumbers
leads to an increase in natural frequency, which is intensified by increased thickness and decreased
apex angle. The effects of variation of circumferential and axial wavenumbers on natural frequency
is greater based on the modified couples stress theory than that based on the classical continuum
theory. As is clear from the illustration, the natural frequencies predicted by the modified couple
stress theory in all values of circumferential and axial wavenumbers are greater than those predicted
by the classical continuum theory. Hence, the modified couple stress theory is known to predict
greater stiffness than the classical continuum theory. In addition, as illustrated, according to the
previous illustration, the effects of increase in apex angle on the decrease in dimensionless natural
frequency, with the increase in circumferential and axial wave numbers become more considerable.
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5.4. Influence of temperature change

The influence of temperature change on dimensionless natural frequency is shown in Fig. (6), at two
cases of low temperature and high temperature environment on the basis of modified couple stress
theory and classical continuum theory. As is illustrated, the increase in temperature, in high
temperature case, leads to decrease in dimensionless natural frequency while as AT is increased for
the case of low temperature, the dimensionless natural frequency increases based on both theories,
modified couple stress theory and classical continuum theory. Besides, it is clear that the small scale
plays an important role in thermo-mechanical vibration analysis. It is illustrated that the natural
frequency considering the modified couple stress theory are always higher than that of classical
continuum theory for two cases of high and low temperature. Consequently, the present study clearly
indicates the importance of utilizing modified couple stress theory in thermo-mechanical analysis
since the modified couple stress theory predicts the natural frequency higher than that of classical
continuum theory at all temperatures and in both low and high temperature environments.
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Figure 6: Effect of temperature change on dimensionless natural frequency for two cases of high
temperature and low temperature environments.

5.5. Influence of foundation stiffness

Figs. (7-8) indicates the effect of elastic medium £, k; on vibration behavior of FG conical shell. As
is clear, the increase in Winkler and Pasternak elastic foundation results in increasing dimensionless
natural frequency since elastic foundation constants increase the stiffness of nanoshell. Moreover,
the influence of coefficient 4, is illustrated more significant than Winkler foundation with coefficient

k.
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Figure 7: Effect of Winkler parameter on the dimensionless natural frequency in the case of high
temperature.
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Figure 8: Effect of Pasternak shear parameter on the dimensionless natural frequency in the case of hig
temperature.

6. Conclusion

In this paper, using the first order shear deformation theory as well as the modified couple stress
theory, the formulation was derived to examine the thermo-mechanical vibration of shear deformable
FG truncated conical shell embedded in an elastic medium. According to power law distribution and
based on the volume fractions of constituents, FG truncated conical shell properties were considered
variable along the thickness direction of nanoshell and temperature-dependent, and governing
equations as well as classical and non-classical boundary conditions were derived using the
Hamilton’s principle. Finally, using these equations, the free vibration of the simply supported FG
conical shell resting on elastic medium subjected to thermal environment is investigated as a special
case. Afterwards, the effects of parameters such as length scale parameter, length parameter, apex
angle, temperature change, gradient index, Winkler and Pasternak constants of elastic medium and
circumferential and axial wave numbers on the natural frequency of FG conical shell based on the
modified couple stress theory and the classical continuum theory was investigated.

Appendix A:

(A
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