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Abstract 

The exact elastic response of a convergent/divergent hyperbolic rotating disc made of a power-law graded material is 
studied under different boundary conditions.  Soundness of the formulas derived is verified with the literature. A 
parametric study is performed to investigate elastic responses of those discs under four boundary conditions such as a 
stationary disc subjected to internal/external pressures, a rotating disc: both surfaces may expand freely, a rotating disc 
mounted a rigid shaft: outer surface either may freely expand or contains a rigid casing. 
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1. Introduction 

Analytical and numerical studies on functionally graded discs have gained a momentum since 1990s. 
There are numerous studies on stationary/rotating discs with constant/variable thickness and made of 
an isotropic and non-homogeneous material in the available literature. Some of those studies were 
performed analytically [1-17]. For some types of those material grading patterns such as a simple 
power rule, or an exponential variation or a linear function it is possible to obtain a closed form 
solution to the problem. For instance if the grading function is chosen as a familiar simple power 
function [1-2, 6, 10, 17],   as in the present study, the differential equations turn into Euler-Cauchy 
types with constant coefficients. For linearly varying properties, the solution is obtained in terms of 
hyper-geometric functions. If the material grading is performed by an exponential function [3, 5, 8, 
12] then Whittaker / Kumer functions or Frobenius series are employed in the solution. Apart from 
those, unlike general use of polar/cylindrical coordinates, elliptic cylindrical coordinate system may 
also be used to get closed form solutions in the formulation [14]. For the two-dimensional analytical 
solution of such problems separation of variables technique with complex Fourier series may even 
implemented in the solution procedure as Jabbari et al. [15] did. For arbitrary grading rules and for 
cylindric monoclinic materials, the analytical solution may also be achieved by using iterative power 
series [16]. However, in general, for other types of grading rules it is required to use a numerical 
solution techniques. 
In the literature, especially analytical studies on such structures subjected to the only the inner 
pressure are relatively large. As a result the scholars, by and large, are obliged to verify their 
advanced results with the available literature which covers merely the formulas for 
stationary/rotating uniform disks subjected to an internal pressure. The number of studies considering 
the continuously variation of the thickness of the disc, simultaneous effects of both the inner and 
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outer pressures together with the rotation at a constant angular velocity under different boundary 
conditions are scarce. In the present study those effects are all considered in the formulation.  

 

Horgan and Chan [1-2] gave explicit solutions for rotating discs of constant density and thickness. 
Horgan and Chan [1] investigated the effects of material inhomogeneity on the response of linearly 
elastic isotropic hollow circular cylinders or disks under uniform internal or external pressure. The 
special case of a body with Young’s modulus depending on the radial coordinate only, and with 
constant Poisson’s ratio, was examined. It was shown that the stress response of the inhomogeneous 
cylinder (or disk) is significantly different from that of the homogeneous body. For example, the 
maximum hoop stress does not, in general, occur on the inner surface in contrast with the situation 
for the homogeneous material. Zenkour [3] studied analytically exponentially graded rotating annular 
discs with constant thickness. Closed form solutions incorporates Whittaker’s functions for 
exponential variation of both elasticity modulus and density. Eraslan and Akış [4] used two variants 
of a parabolic function for disks made of functionally graded materials. Zenkour [5] extended his 
study for such discs with rigid casing.  Bayat et al. [6], based on the power-law distribution, gave 
both analytical and semi-analytical elastic solutions for axisymmetric rotating hollow discs with 
parabolic and hyperbolic thickness profiles. This semi-analytic solution was obtained by dividing the 
disc with varying thickness into sub-domains with uniform thickness. Peng and Li [7] studied a 
thermoelastic problem of a circular annulus made of functionally graded materials with an arbitrary 
gradient. Their  analysis involving  a Fredholm integral equation neither requires a special form of 
the gradient of material properties nor demands partitioning the entire structure into a multilayered 
homogeneous structure. Zenkour and Massat [8] used the modified Runge-Kutta algorithm in their 
numerical analysis while the hyper-geometric and Kummer’s functions were employed in their 
analytical study.  Çallıoğlu et al. [10] performed an exact stress analysis of annular rotating discs 
made of functionally graded materials by assuming that both elasticity modulus and material density 
vary radially as a function of a simple power rule with the same inhomogeneity parameter. Çallıoğlu 
et al. [10] gave analytical formulas for uniform rotating discs subjected to the boundary condition 
such as expansions are free at both surfaces under rotation.  Ghorbani [11] used a time domain semi-
analytical solution to study thermoelastic creep behavior of functionally graded rotating 
axisymmetric disks with variable thickness. In analytical solution Ghorbani [11] divided the disk into 
some virtual sub-domains. General solution of equilibrium equations in each sub-domain were 
obtained by imposing the continuity conditions at the interface of the adjacent sub-domains together 
with global conditions.  Nejad et al. [12-13] gave a closed-form analytical solution in terms of 
hyper-geometric functions to elastic analysis of exponentially functionally graded stationary discs 
subjected to internal and external pressures. Khorshidvand and Khalili [14] studied thermal and 
mechanical stresses as an analytical solution of the Navier equation for symmetric thick hollow 
cylinder made of exponentially functionally graded material which is rotating around its axis is 
presented in elliptic-cylinder coordinate system. For a particular case they showed that, with the help 
of the elliptical coordinate system, Navier’s equations is converted to non-homogeneous ordinary 
differential equation with constant coefficients since elliptic cylinder is converted to circular cylinder 
and exponential-law is converted to power- law along the radial direction. Recently, Yıldırım and 
Boğa [17] presented closed-form formulas for a power-law graded rotating uniform discs under 
different boundary conditions. 
A little number of exact studies presenting the external pressure and rotation effects together with the 
internal pressure on the elastic behavior of the variable thickness disc made of a functionally graded 
material (FGM) under different boundary conditions may exist in the literature.  As far as the author 
knows the closed form formulas which consider the rotating disks mounted to a shaft and have 
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continuously varying thickness profile might exist in the available literature. This motivated to the 
author to accomplish this study. 
In this work the exact elastic response of a rotating disk made of a nonhomogeneous material is 
studied by extending of the study in Reference [17] to the rotating disk having a continuously 
varying hyperbolic thickness profile. Both convergent-hyperbolic and divergent-hyperbolic disk 
profiles together with uniform profile are all studied. Power-law grading is used for material 
gradation pattern. As stated above, as a special application of a simple power material grading rule 
the coefficients of the governing equation become constants. This allows ones to get closed-form 
solutions to the problem having Euler-Cauchy type of differential equations. The present formulation 
comprises both continuosly variations of elasticity modulus and material density including 
continuously variation of the thickness of the disc except variation of Poisson’s ratios.  Contrary to 
the literature all effects affecting the elastic behavior of the disk with varying thickness such as 
internal and external pressures including rotation at a constant angular velocity are all studied under 
four physical boundary conditions and presented in compact forms.  

2. Governing equation and its solution  

The governing equation which is in the form of a second degree nonhomogeneous differential 
equations with variable coefficients are obtained by exploiting the strain-displacement relations, 
constitutive equations and equilibrium equations for an axisymmetric plane-stress case. For isotropic 
functionally graded materials and axisymmetric loading, the linearly elastic rotating disc problem is 
reduced to the solution of a second order nonhomogeneous differential equation with variable 
coefficients as follows: 
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where r is the radial coordinate, ݑ௥(ݎ) is the radial displacement, ν is the Poisson’s ratio, ℎ(ݎ) 
defines the thickness profile, ω is the constant angular velocity, E(r) is the Young’s modulus, and 
 is the density. Eq. (1) in terms of the radial displacement called Navier equation comprises both (ݎ)ߩ
the inhomogeneity of the materials and the rotation as a body force.  This type of problems are also 
referred to as boundary value problems. The complete solution is obtained by adding the 
homogeneous and particular solutions. 
For a special case, by introducing a simple power material grading rule, such a second degree 
homogeneous/nonhomogeneous differential equation takes the form of Euler-Cauchy differential 
equation with constant coefficients, which allows a closed-form solution. For any other material 
grading pattern which causes variable coefficients in the equation, in general, an appropriate 
numerical technique is required. Any second-order non-homogeneous differential equation is called 
as an Euler Cauchy equation if it can be written in the following form 

(ݔ)ᇱᇱݕଶݔଵߤ + (ݔ)ᇱݕݔଶߤ + (ݔ)ݕଷߤ =  (2)                                      (ݔ)݂

where ߤଵ, ߤଶ and ߤଷ are real/complex-valued constants. Assuming a homogeneous solution is in the 
form of (ݔ)ݕ =  ఈ, a general solution of Euler-Cauchy equation is given byݔ

(ݔ)ݕ = ఈభݔଵܣ + ఈమݔଶܣ +  (3)                                               (ݔ)௣ݕ

where ݕ௣(ݔ) is the particular solution which may be found by general technique “variation of 
parameters” and ߙ௜ are roots of the characteristic equation. After solution of Eq. (1) for ݑ௥, Hooke’s 
law  
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(ݎ)௥ߪ = ா(௥)
ଵିఔమ (ݎ)௥ߝ] +  (4)                                               [(ݎ)ఏߝߥ

(ݎ)ఏߪ =
(ݎ)ܧ

1 − ଶߥ (ݎ)ఏߝ] +  [(ݎ)௥ߝߥ

together with strain-stress relations  

(ݎ)௥ߝ = ௥ݑ
ᇱ(ݎ)   ;  ߝఏ(ݎ) = ௨ೝ(௥)

௥
                                             (5) 

are used to calculate both the radial and hoop stresses, ߪ௥ and ߪఏ.  In Eq. (5) ߝ௥ and ߝఏ represent the 
radial and tangential strains, respectively. 

3. Disc geometry and material gradient                                                

The disk whose inner radius is denoted by a and outer radius is denoted by b is assumed to be 
symmetric with respect to the mid plane, and its profile vary radially continuously in an 
hyperbolically form given by  

ℎ(ݎ) = ℎ௕ ቀ௥
௕

ቁ
௠

                                                          (6)                                                

where ℎ௕ is the thickness of the disc at the outer surface. From the above function a uniform disc 
profile is obtained with ݉ = 0, a convergent hyperbolic dick profile is obtained with ݉ < 0 and for 
݉ > 0 a divergent hyperbolic disc profile is reached (Fig. 1) 

 

Divergent profile 

 

Convergent profile 

Figure 1: Hyperbolic disk profiles 

A metal-ceramic pair is mixed radially provided that it complies with a simple power material 
grading rule in order to create a new isotropic but no longer homogeneous material having more 
attractive material properties especially for the heat resistance.  Suppose that Material-a is located at 
the inner surface and Material-b is located at the outer surface. Between inner and outer surfaces 
material properties vary by obeying either 
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or 
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rules. In Eq. (7) inhomogeneity parameters are defined as follows 
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4. Closed-form elastic solutions for FGM discs  

In the below the internal/external uniform pressure effect and rotation effect are studied separately. 
For small deformations, the superposition principle will be hold to estimate the overall behavior of 
the structure under whole loadings. It may be noted that those equations presented here cannot be 
used directly for cylindrical vessels. Because the exact stiffness for a disk geometry under plane 
stress assumption were used in the solution to get simpler equations under for all boundary 
conditions shown in Fig. 2. Apart from those boundary conditions BC=3 and BC=4 (Fig. 2) together 
with varying thickness assumption do not matter for pressurized cylinders. However, at the final 
stage of the substitution if the resulting formula involves the terms E or ߥ the analogs between the 
plane-strain and the plain stress equations may be employed. For instance, if one replace formally ߥ 
with ఔ

ଵିఔ
, and  E with ா

ଵିఔమ he may get the results for the plain-strain case from the plane stress 

solutions. As it is known ߥ should be replaced formally with ఔ
ଵାఔ

, and E is to be replaced with ா(ଵାଶఔ)
(ଵାఔ)మ  

to get the plane stress results from the plain strain solutions. In this study since the functionally 
graded material is composed of two materials and Poisson's ratio is assumed to be unchanged along 
the radial direction, it may be functional to use the arithmetic mean of the numerical values of 
Poisson's ratios in calculations. In application of the analogs, m=0 should be taken in Eq. (6) to reach 
the equations for the plain-strain case. For simplicity in what follows, the author confines attention to 
the plane stress problem. It may be notable that if Eq. (7a) is employed then the followings 

∗ܧ = ாೌ
௔ഁ;   ߩ∗ = ఘೌ

௔ഁ                                                              (9a) 

if Eq. (7b) is adopted then the followings should be used in the following formulas. 

∗ܧ = ா್
௕ഁ ;   ߩ∗ = ఘ್

௕ഁ                                                              (9b) 
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(ܽ)௥ߪ =  ௔݌−
(ܾ)௥ߪ =  ௕݌−

(ܽ)௥ߪ = 0 
(ܾ)௥ߪ = 0 

(ܽ)௥ݑ = 0 
(ܾ)௥ߪ = 0 

(ܽ)௥ݑ = 0 
(ܾ)௥ݑ = 0 

Internal/external pressures at 
both surfaces ( 0 ) 

Expansions are free 
at both surfaces 

( 0 ) 

Rigid shaft at the center 
Free expansion at the 

outer ( 0 ) 

Rigid shaft at the center 
Rigid casing at the outer 

( 0 ) 

Figure 2:  Boundary conditions considered in the present study 

4.1. Internal/External uniform pressure effects 

The differential equation given by Eq. (10) is solved for pressurized disk with varying sections under 
the boundary condition BC-1 (Fig. 2),  ߪ௥(ܽ) = (ܾ)௥ߪ ௔ and݌− =  ௔ is the internal݌ ,௕. Where݌−
uniform pressure and ݌௕  is the external uniform pressure. 

(ିଵା௠ఔାఉఔ)௨ೝ
௥మ + (ଵା௠ାఉ)௨ೝ

ᇲ

௥
+ ௥ݑ

ᇱᇱ=0                                                   (10) 

By introducing the following 

ξ = ඥ(4 + (݉ + ݉)(ߚ + ߚ −  (11)                                                    ((ߥ4

homogeneous solution takes the form of 

௥ݑ = ݎ
భ
మ(ି௠ିఉିక)(ܥଵ +  క)                                                        (12)ݎଶܥ

By employing Eqs. (4) and (5) both the radial and hoop stress are simplified as follows 
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In Eqs. (12) and (13) 
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and 

ଵଵ= ா∗௥ഁܥ

ଵିఔమ                                                               (15) 

After substituting Eq. (14) into the solution in Eqs. (12) and (13) we will have the followings closed 
formed solutions for the radial displacement and radial stress. Since the explicit form of the hoop 
stress occupies more volume it is not presented here. 
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As stated above, since Eq. (16b) does not incorporate the terms related to either Young’s modulus or 
Poisson’s ratio at the final stage of substitution, it may be directly used for cylindrical structures. 
However for the radial displacement in Eq. (16a) it is necessary to use 

ߥ = ఔ
ଵିఔ

∗ܧ     ;  = ா∗

ଵିఔమ                                                       (17) 

to transform Eq. (16) from the plane stress to the plane strain.  

4.2. Rotation effect 

Let’s consider just the effect of rotation, (݌௔ = ௕݌ = 0) by the following nonhomogeneous equation 
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The general solution of Eq. (18) is written in terms of unknown coefficients ܥଵ and ܥଶ as follows 

௥ݑ = ݎ
భ
మ(ି௠ିఉିక)(ܥଵ + (కݎଶܥ +  ଷା௤ିఉΩ                                    (19)ݎ

Substitution Eq. (19) into Eq. (4) together with Eq. (5) renders 
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                                        (21) 

The unknowns in Eqs. (19) and (20) should be determined from the boundary conditions. For the 
boundary condition BC-2 (Fig. 2), ߪ௥(a)=0 and ߪ௥(b)=0 , they are attained as follows 
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                     (22) 

For BC-3 (Fig. 2), ݑ௥(a)=0  and  ߪ௥(b)=0, ܥଵ and ܥଶ are determined as follows 
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                 (23) 

And finally, for BC-4 (Fig. 2), ݑ௥(a)=0 and ݑ௥(b)=0 , those constants are got as follows 

ଵܥ = − ௔഍௕
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5. Verification of the present formulas 

The present formulas are applied to uniform discs made of an isotropic and homogeneous material 
and results are presented in Table 1 in a concise manner. From the table, it is shown that, for BC=1 
and BC=2, present formulas coincides with the formulas given for uniform discs made of an 
isotropic and homogeneous material [18-19].  
Now, we may consider isotropic and inhomogeneous materials to test the present formulas. Let's 
consider Eq. (16b). At the final stage of substitution any term related to Young's modulus and 
Poisson's ratio is not observed. This means that there is no term to be transformed from the plane 
stress to the plane strain. Hence it may also be used directly for cylindrical vessels. In Eq. (16b), the 
first term represents the inner pressure effect on the radial stress and the second term represents the 
external pressure effect.  For uniform disks, with m=0,  Eq. (16b) becomes 

=௥(௠ୀ଴)ߪ
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భ
మ(షഁశ഍శమ)௣ೌ௥

భ
మ(ഁష഍షమ)൫௕഍ି௥഍൯

௔഍ି௕഍   + ௕
భ
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భ
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௕഍ି௔഍                           (25)                  

where 

ξ = ඥ4 + ଶߚ − 4βν                                                           (26) 

Now, Eq. (25) is available for both uniform discs and cylinders subjected to the boundary condition 
BC=1 (Fig. 2). Horgan and Chan [1] proposed formulas for linear elastic response of uniform 
cylinders or discs made of a power-graded material and subjected to BC=1. Horgan and Chan’s [1] 
equation for radial stress is rewritten here by using the present notation 
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௥ିுைோீ஺ேߪ = − ௔
షഁ

మ ௕
షഁ

మ ௥
భ
మ(షమష഍శഁ)

௕഍ି௔഍ (−ܽకାഁ
మ ܾଵା഍

మ݌௕ + ܽ
ഁ
మ ܾଵା഍

మ݌௕ݎక + ܾ
ഁ
మ ܽଵା഍

మ݌௔൫ܾక −  క൯)      (27)ݎ

or in the form of 

௥ିுைோீ஺ேߪ =  ௔భశ഍
మషഁ

మ ௥
భ
మ(షమష഍శഁ)

௔഍ି௕഍ ௔൫ܾక݌ − క൯ݎ + ௣್௕భశ഍
మషഁ

మ ௥
భ
మ(షమష഍శഁ)

௕഍ି௔഍ కݎ−) + ܽక)           (28) 

Table 1: Formulas for uniform discs made of an isotropic and homogeneous material 
૚૚࡯) = ۳

૚ିࣇ૛ , ࢼ = ࢗ = ࢓ = ૙, ૆ = ૛, Ω= (ି૚ାࣇ૛)࣓࣋૛

ૡࡱ
 ) 

 
 
 
 
 
 

BC=1 (*) 

 

− =௥ݑ ௔మ௣ೌ(௕మ(ఔାଵ)ି(ఔିଵ)௥మ)
ா௥(௔మି௕మ)

+ ௕మ௣್(௔మ(ఔାଵ)ି(ఔିଵ)௥మ)
ா௥(௔మି௕మ)

  

௥= ௔మ௣ೌ(௕మି௥మ)ߪ
௥మ(௔మି௕మ)

+ ௕మ௣್(௔ି௥)(௔ା௥)
௥మ(௕మି௔మ)

                                                                                                          

ఏߪ = − ௔మ௣ೌ(௕మା௥మ)
௥మ(௔మି௕మ)

+ ௕మ௣್(௔మା௥మ)
௥మ(௔మି௕మ)

  

 
 

 
 
 

BC=2 (**) 

௥ݑ = ఘఠమ(௔మ(ఔାଷ)(௕మ(ఔାଵ)ି(ఔିଵ)௥మ)ି(ఔିଵ)௥మ(௕మ(ఔାଷ)ି(ఔାଵ)௥మ))
଼ா௥

  
௥= ఘఠమ(ఔାଷ)(௔మି௥మ)(௥మି௕మ)ߪ

଼௥మ                                                                                                               
ఏߪ = ఘఠమ(௔మ(ఔାଷ)(௕మା௥మ)ା௥మ(௕మ(ఔାଷ)ି(ଷఔାଵ)௥మ))

଼௥మ   
 
 

 
 
 

BC=3 

௥ݑ = ஐ(௔ି௥)(௔ା௥)(௔మ(௕మ(ఔାଵ)ି(ఔିଵ)௥మ)ା௕మ((ఔାଵ)௥మି௕మ(ఔାଷ)))
௔మ(ఔିଵ)௥ି௕మ(ఔାଵ)௥

  

௥ߪ = ୉ஐ(௥మି௕మ)(௔ర(ఔమିଵ)ି௔మ(ఔିଵ)(ఔାଷ)(௕మା௥మ)ା௕మ(ఔାଵ)(ఔାଷ)௥మ)
(ఔమିଵ)௥మ(௔మ(ఔିଵ)ି௕మ(ఔାଵ))

                                                           

ఏߪ =
୉ஐቀ௔ర൫ఔమିଵ൯൫௕మା௥మ൯ି௔మ(ఔିଵ)൫௕ర(ఔାଷ)ା(ଷఔାଵ)௥ర൯ି௕మ(ఔାଵ)௥మ൫௕మ(ఔାଷ)ି(ଷఔାଵ)௥మ൯ቁ

(ఔమିଵ)௥మ൫௔మ(ఔିଵ)ି௕మ(ఔାଵ)൯
  

 
 

 
 
 

BC=4 

௥= ஐ(௥మି௔మ)(௥మି௕మ)ݑ
௥

  
௥ߪ = ୉ஐ(௔మ((ఔାଵ)௥మି௕మ(ఔିଵ))ା௥మ(௕మ(ఔାଵ)ି(ఔାଷ)௥మ))

(ఔమିଵ)௥మ              

ఏ= ୉ஐ(௔మ(௕మ(ఔିଵ)ା(ఔାଵ)௥మ)ା௥మ(௕మ(ఔାଵ)ି(ଷఔାଵ)௥మ))ߪ
(ఔమିଵ)௥మ      

                                                               
                         (*) Roark’s formulas [18] 
                       (**) [19]. 
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Figure 3:  Verification of Eq. (16b) with Horgan and Chan’s [1] formula. 

Formulas (25) and (27-28) exactly equal to each other. Verification process is shown in Fig. 3. 
Çallıoğlu et al. [10] studied the elastic response of power-graded uniform rotating disks subjected to 
BC=2 (Fig. 2).  They assumed that both the Young’s modulus and density change with the same 
inhomogeneity index as follows (ܧ = ߩ , ௕ܧ =  ( ௕ߩ

(ݎ)ܧ = ܧ ቀ௥
௕

ቁ
ఉ

(ݎ)ߩ  ;  = ߩ ቀ௥
௕

ቁ
ఉ

                                                 (29) 

 
From Eqs. (19-21) for the radial stress with m=0 , ݍ =  and with the followings ,ߚ

ξ = ඥ4 + ଶߚ − 4βν   ;     Ω= 
(ିଵାఔమ)ఘ್ఠమ

ா್(଼ାଷఉାఉఔ)
ଵଵ= ா್௥ഁܥ        ;        

௕ഁ(ଵିఔమ)
                   (30) 

we may get the following from Eq. (20a) 

௥ି(௠ୀ଴,௤ୀఉ)ߪ = ଵ
ଶ

ݎଵଵܥ
భ
మ(ିଶିఉିక)(−ܥଵ(ߚ − ߥ2 + (ߦ + ߚ−)కݎଶܥ + ߥ2 + (ߦ + ݎ2

భ
మ(଺ାఉାక)(3 +  (Ω(ߥ

(31) 

where (from Eq. (22)) 

ଵܥ =
ߥ)2 + 3)Ωܽకܾ

ଵ
ଶ(ఉାకା଺) − ߥ)2 + 3)Ωܾకܽ

ଵ
ଶ(ఉାకା଺)

(ܽక − ܾక)(ߚ − ߥ2 + (ߦ
 

ଶܥ = ଶ(ఔାଷ)ஐ(௔
భ
మ(ഁశ഍శల)ି௕

భ
మ(ഁశ഍శల))

(௔഍ି௕഍)(ఉିଶఔିక)
                                          (32) 
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Figure 4:  Verification of Eq. (20a) with Eqs. (21-22) with Çallıoğlu et. al.’s [10] formula. 

 

After substituting Eq. (32) into Eq. (31) the radial stress takes the following form 

௥ି(௠ୀ଴,௤ୀఉ)ߪ = ா್(ఔାଷ)ஐ௥
భ
మ(ഁష഍షమ)(௔

భ
మ(ഁశ഍శల)(௥഍ି௕഍)ା௔഍(௕

భ
మ(ഁశ഍శల)ି௥

భ
మ(ഁశ഍శల))ି௥഍௕

భ
మ(ഁశ഍శల)ା௕഍௥

భ
మ(ഁశ഍శల))

௕ഁ(ఔమିଵ)(௔഍ି௕഍)
   (33) 

Eqs. (33) coincides exactly with Çallıoğlu et. al.’s [10] solution. Verification is shown in Fig. 4. 

6. Numerical examples 

The geometrical properties of the disc are: ܽ =  0.025 ݉, ܾ = 0.25 ݉, ℎ௕ = 0.025݉ (ℎ௕ is the 
thickness at the outer radius of the disc). For the convergent disc profile ݉ = −1; for the divergent 
disc profile ݉ = 1  ; for the uniform-thickness disc profile  ݉ = 0 are employed. Material properties 
of metal and ceramic are presented in Table 2. Numerical results are presented in Figs 5-8. 
Fig. 5 shows the elastic response of the disk having different thickness profile to the internal and 
external pressures. For disks subjected to the equal internal and external pressures, maximum hoop 
stress is observed at inner surface of divergent disc. Uniform disc profile offers minimum hoop stress 
at the inner surface. For equal internal and external pressures, again, divergent hyperbolic profile 
gives the maximum radial stress in the vicinity of the inner surface. Maximum radial displacement 
observed for divergent hyperbolic profiles and equal internal and external pressures at the outer 
surface of the disc.   
Fig. 6 shows the variation of the radial displacement with angular velocity, boundary conditions, and 
disc profiles. BC=2 and BC=3 present the maximum radial displacement at the outer surface for 
divergent hyperbolic disc profile at ߱ =  ,For all disc profiles and angular velocities .ݏ/݀ܽݎ 150
BC=4 offers maximum radial displacement in the vicinity of the mid surface. 
Fig. 7 shows the variation of the radial stress with angular velocity, boundary conditions, and disc 
profiles. Maximum radial stress occurs at the vicinity of the inner surface for the divergent disc 



Author 1, Author 2 and Author 3 

49 
 

profile and BC=2. For BC=3 maximum radial stress is located at the vicinity of the inner surface of 
the convergent disc profile while at the inner surface for uniform and divergent disk profiles. Its 
magnitude becomes 4 times higher than uniform profile at ߱ =  For the boundary .ݏ/݀ܽݎ 150
condition BC=4 maximum radial stress is observed at the inner surface of the divergent hyperbolic 
disc while it is located at the outer surface for convergent disc profile.  
Fig. 8 shows the variation of the hoop stress with angular velocity, boundary conditions, and disc 
profiles. For BC=2, maximum hoop stress occurs at the inner surface for all disc profiles while for 
BC=3 and BC=4 it is observed at the vicinity of the inner surface. Again,   divergent disc profiles 
renders the maximum magnitude of the hoop stress.  
In general when just rotation is considered, radial stresses becomes dominant than the hoop stresses. 
Increasing constant angular velocity also increases the effects of all the elastic responses. 

 
Table 2: Material properties 

  
  E (GPa) ρ (kg/m3) ࣇ 

METAL Nickel (Ni)  199.5 8900 0.3 
CERAMIC Zirconium Oxide (ZrO2)  116.4 3657 0.3 

 

 

Figure 5: Elastic response of the disk having different disc profiles to the internal and external 
pressures 
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Figure 6: Variation of the radial displacement with angular velocity, boundary conditions, and disc 
profiles 

 

Figure 7: Variation of the radial stress with angular velocity, boundary conditions, and disc profiles 
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Figure 8: Variation of the hoop stress with angular velocity, boundary conditions, and disc profiles 

 

 

 

7. Conclusions 

In this work the exact elastic response of a continuously varying hyperbolic rotating disk made of a 
nonhomogeneous material is studied analytically by considering all effects affecting the elastic 
behavior of the disk such as internal and external pressures including rotation at a constant angular 
velocity under four physical boundary conditions. A parametric study is also performed to see the 
variation of the radial displacement, radial and hoop stress with the internal/external uniform 
pressures, angular velocity for convergent/divergent hyperbolic disk profiles and uniform disks.  
As it is observed from the literature that existing formulas for the elastic responses of a rotating disc 
made of a functionally graded material comprise uniform thickness and boundary conditions such as 
either BC=1 or BC=2. In the derivation of some exact formulas inhomogeneity constants are 
generally taken as equal to each other. For two physical materials to be arranged, this assumption 
does never hold. For other boundary conditions, namely for BC=3 and BC=4, existing formulas for 
discs with varying sections and made of even an isotropic and homogeneous material are also scare. 
Due to those reasons, the present study offers comprehensive analytical formulas. The closed-form 
expressions offered in this study may be directly used safely in some of engineering applications 
including material tailoring and optimization problems of such discs. The present study may also be 
very helpful to the scholars in the quick verification process of their valuable results.  
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