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Abstract 

The popularity of nanodevices is gaining a vital importance nowadays. These supersmall sized devices started to 
be used in human body as in computers. The first using of medical nanotechnology is to deliver of medications 
with the hope that ‘magic bullet’ chemotherapy to eradicate tumor cells with lower systemic toxicity. Carbon 
nanotubes are widely used in nanotechnology and many works have been done about it. With the science always 
need better materials with better properties, scientist have developed Carbon nanotubes to Silicon carbide 
nanotubes. On the other hand, another king of nanotube with better stability properties than Carbon nanotubes 
is Boron nitride nanotube. In this work, the stability of the Silicon nanotube and Boron nitride nanotubes are 
investigated and compared in buckling case. The stability of these nanotubes have an important role since it is 
used in high-tech equipment and started to be implanted inside of human body. In this article, the buckling 
analysis SiCNT and BNNT is investigated by using Euler-Bernoulli beam theory for different boundary 
conditions. Results are presented in figures and table. 
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1. Introduction 
 
Nanometer materials have attracted much interest due to their superior material properties and 
potential applications in electronic sensor and devices. These electronic sensor and devices 
have been used in many areas such as aerospace, computers, biotechnology, and 
optoelectronic. Carbon nanotubes are the first tube form of graphene sheets used in nano-
electronic devices. Because of being the first nanotube, much research has been made about 
its material properties, stability, and conductivity. The extraordinary mechanical strength, 
elasticity, and conductivity have made the nanotubes one the most popular research area in 
past decade. One of the weak sides of carbon nanotube was its durability under very high 
temperatures. Carbon nanotubes are capable to stay stable up to 600oC [1]. In order to use 
nanotubes in devices-sensors which have to work under very high temperature such 
aerospace, researchers have developed a new kind of nanotube by combining Carbon and 
Silica atoms in the graphene sheet. First, the NASA Glenn Research Center has collaborated 
with Rensselaer and produced Silicon Carbide Nanotubes (SiCNTs)  [2]. More recently, Pei 
[3] have found Silicon Nanotubes which are considered as a kind of self-assembled nanotube 
which can form crystal structures. Silicon Carbide Nanotubes have attracted much attention 
due to its better material properties than Carbon nanotubes. SiCNT is capable to stay stable up 
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to 1000oC [1]. The capability of staying stable under higher temperature has made SiCNTs 
one of the most popular nanotechnological research area by taking over the popularity of 
CNTs in past few years. On the other hand, another popular kind of nanotube is Boron Nitride 
Nanotube. The specialty of BNNT is their higher elasticity. The Young modulus of BNNT is 
1.8TPa whereas CNT is 1TPa and SiCNT is 0.62TPa [1]. Many researchers have been studied 
those nanotubes by using the theory for modeling of nano/micro sized mechanical or 
biological systems [4-12]. As nanotubes are applied in nano size such as atomic force 
microscope, nano bridges, carbon nanotubes, nanowires and microelectro mechanical systems 
(MEMS), nano actuators and sensors. The scale effect such as play an important role in 
models, many researches have been made in literature in order to show the small-size effect 
[13-25]. Classical theories cannot be sufficient to calculate the critical buckling loads of nano-
sized models. To address this issue various kind of size effect theories such as nonlocal 
elasticity theory, couple stress theory, surface elasticity theory etc. have been used [28-44]. 

In Fig. 1. A typical Silicon Carbide graphene sheet and a typical Boron Nitride graphene sheet 
are demonstrated.  As it can be seen from the figure, Silicon Carbide graphene sheet is 
produced from the combine of Carbon atoms (in black) and Silica atoms (in yellow). By 
rolling the graphene sheet, Silicon Carbide Nanotube can be obtained. The same process is 
valid for obtain the Boron Nitride nanotube from Boron Nitride graphene sheet. 

In previous papers, the buckling analysis of Silicon carbide nanotube [26] and Boron nitride 
nanotube [27] have been studied. In this work, we aimed to compare the critical buckling 
forces of both nanotubes.   

 

Fig. 1. Demonstration graphene sheets  
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2. Buckling analysis of nanotubes 

The demonstration of silicon carbide nanotube and boron nitride nanotube is shown in Fig.(2). 
In order to calculate the critical buckling load of the model, Euler-Bernoulli beam theory is 
used for different boundary conditions. Results are obtained for both BNNT and SiCNT. For 
modeling, L is the length; Ravg is average radius, Davg average diameter, t thickness, E 
Young’s modulus of the nanotube. 

 
Fig. 2. Demonstration of Boron Nitride Nanotube and Silicon Carbide Nanotube respectively 

Silcon carbide nanotubes are tubes which contain both Si and C atoms bonded each other. In 
this work, as it can be seen from Fig. 1, the type of which three Si atoms are bonded to one C 
atoms. Calculations have been made for different types of boundary conditon by employing 
Euler-Bernoulli classical beam theory. The mechanical continuum model of nanotube is 
shown in Fig. 3. The length of the nanotube is shown with ‘L’, the average radius with ‘Ravg’ 
and the thickness with ‘t’. In continuum model, the nanotube will be modeled as a perfect 
cylindrical shaped tube with a constant inner and outer diameter. The average radius ‘Ravg’ is 
obtained by using the arithmetical average of the inner and outer radius. The thickness ‘t’ is 
the difference between the inner and outer radius. 

 

 
Fig. 3. Real and continuum model nanotube 
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3. Euler-Bernoulli formulation 

The buckling equation of a beam is: 
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ydEI      (1) 

 

If setting 
EI
P

2  , Eq.(1) can be simplified as: 

 
02  ıııv yy       (2) 

If setting rxey  , Eq.(2) can be simplified as: 

 
0224  rxrx eBreBr      (3) 

 
By reducing Eq.(3), we can obtain: 
 

0224  rr        (4) 
 

Solving Eq.(4), the result is: 
 

22 r      (5) 
02,1 r   and  ir 4,3   

  
2,1r  and 4,3r  are two pairs of single complex root of Eq.(4). 

     
By substitution roots into Eq.(5) and solving it, we obtain: 
 

4321 cossin CxCxCxCy         (6) 
 

1C , 2C , 3C , 4C are constants which can be obtained from boundary conditions. The first 
order derivative of Eq.(6) is: 

 
321 sincos' CxCxCy             (7) 

 
The second order derivative of Eq.(6) is: 
 

xCxCy  cossin'' 2
2

2
1      (8) 

 
The third order derivative of Eq.(6) is: 
 

xCxCy  sincos''' 3
2

3
1      (9) 

 
For a beam which is Clamped-Free supported, the boundary conditions would be as 

followed: 
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0)0(')0(  yy ,  0)(')(''')('' 2  lylyly     (10) 
 

By substituting boundary conditions into Eq.(6), Eq.(7), Eq.(8) and Eq.(9) we obtain: 
 
 

0)0( 42  CCy      (11) 
0)0(' 31  CCy       (12) 

0cossin)('' 2
2

2
1  lClCly      (13) 

0)(')(''' 2
3

2   Clyly     (14) 
 

As it is mentioned above 1C , 2C , 3C , 4C are constants and we can obtain those constant 
by using Eq.(11), Eq.(12), Eq.(13) and Eq.(14). The solution is obtained as follow: 

 
0)cos(5 l      (15) 

 
There are 2 possibilities which make the Eq.(15) equal to zero. 
 

 05        (16) 
0)cos( l       (17) 

 

By substituting 
EI
P

2 into Eq.(17) we can obtain: 

 

0)cos( l
EI
P , so 
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nl

EI
P

     (18) 

 
 
So the buckling load can be obtained via this formula: 
 

2

22

4l
EInP 

       (19) 

The solutions are similarly obtained for other types of boundary conditions. 
 
 

3.1. Numerical examples 
 

In this study, the buckling of SiCNTs and BNNTs with various boundary conditions is 
investigated via classical Euler-Bernoulli beam theory. Some of the results which are showing 
the critical buckling loads for Clamped-Free, Simple-Simple, Clamped-Simple, Clamped-
Clamped boundary conditions are in Figure 4.The elasticity modulus of SiCNT is E=0.62 
TPa, the elasticity modulus of BNNT is E=1.8TPa [1], the thickness is t=0.075 nm for both 
nanotubes, and the moment of inertia is obtained as I=πtRavg

3.( Ravg=Davg/2). As it can be seen 
in Figure 4, the buckling load is investigated for simply supported, clamped, propped and 
cantilever boundary conditions respectively.  
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Fig.4. Variation of buckling load of SiCNT (in black) and BNNT (in blue) with different 
boundary conditions. 

 
In Fig.4 blue line represent the critical buckling load of BNNT, black lines represent the 
critical buckling load of SiCNT for C-F, S-S, C-S, C-C boundary conditions. As it can be seen 
from the figure the buckling load is decreasing dramatically with the increasing of length for 
both nanotubes.  

4. Concluding remarks 

Buckling analysis of silicon carbide nanotube (SiCNT) and boron nitride nanotube (BNNT) is 
investigated for various boundary conditions (C-F, S-S, C-S, C-C). Present equations from 
literature are used in order to calculate the critical buckling loads. Results are presented in a 
figure.  
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