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Abstract

This paper introduces the fourth order compact finite difference method for solving the numerical solution of
one-dimensional wave equations. The convergence of the method for the problem under consideration had been
investigated. To validate the applicability of the method on the proposed equation, two model examples have
been solved for different values of mesh sizes. The numerical results in terms of point wise absolute errors
presented in tables and graphs show that the present method approximates the exact solution very well.
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1. Introduction

Partial differential equations are equations that involve unknown functions of several
variables and their partial derivatives. Wave equation is a hyperbolic second order linear
partial differential equation which describes the nature of waves occurring in various physical
phenomena. Initial value problems of hyperbolic type occurring in different fields like: sound
wave, elastic, vibrations, fluid dynamics etc [1]. In physics, propagation of sound, light and
water waves is modeled by hyperbolic partial differential equations. The efficient and
accurate numerical techniques for the wave equations are of fundamental importance for the
simulation of time dependent acoustic, electromagnetic or elastic wave phenomena [2].

The development of numerical techniques for the solution of the hyperbolic nonlocal
boundary value problems has been an important research topic in many branches of science
and engineering [3]. There are many papers that deal with the numerical solution of wave
equations. Recently, exponential B-spline collocation method for the numerical solution of
one-space dimensional nonlinear wave equation with strong stability preserving time
integration [3], numerical solution based on shifted Legendre tau technique for solving one-
dimensional wave equation with an integral condition [4], numerical solution of one-
dimensional heat and wave equation by non-polynomial quintic spline method [5] and a
Galerkin based finite element model has been developed to solve linear second order one
dimensional inhomogeneous wave equation numerically with accuracy of the developed
scheme has been analyzed by comparing the numerical solution with exact solution given by
the authors in [2]. In this paper, we introduce fourth order compact finite difference method
(CFDM) for solving homogeneous and non-homogeneous one dimensional wave equations.
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2. Description of the Method

Consider the one dimensional wave equation of the form:

o’'u ,0u

——c —=q(x,t), O0<x<l, 0<t<T 1

7 € 3 q(x,1) (D
subject to the initial conditions:

ou

u(x,0) = f(x) and = B0 =g )

and with boundary conditions:
u(0,0) = f,(t) and u(l,t)= f,(1) 3)

where ¢’ and [ are positive finite real constants, the functions:

q(x,t), f(x), g(x), f,(t) and f,(¢) are real continuous functions.

An example of hyperbolic partial differential equation is a one-dimensional wave equation for
the amplitude function u(x,¢)with position xand timef. In order for this equation to be
solvable the initial conditions Eq. (2) as well as the boundary conditions Eq. (3) should be
provided [6]. To describe the scheme, we divide the interval [0,/] and [0,7]into N and M

equal subintervals of mesh length /4 and k respectively.

Let O0=x,<x,<x,<...<x,,<x,=[, and 0=1,<¢ <t,<...<ty,<t, =T be the mesh
points with x, =x,+ih and ¢, =1, + jk, for i=L2,...N andj=0,1,...,M. Assume
thatu(x,t) has continuous higher order partial derivatives on the region[0,/]x[0,T ] . For the

sake of simplicity, we use u(xl.,t].)zu(i,j),%( X;,t,) = (1 J)
0'u 8" th . . . .
and P (x;,2,) = (l J),(n>1 called n" order derivatives). By using Taylor series
expression, we have.
h* &’u Wou, .. h'ou W ou . .
u(i+1,j)=ul, J)+h (l N+ 2,82( L)+ 3,83( J)+Z!a4( L)+ 5'85(1 )+
Q)]
. : .. h282 ~ W u h484 .~ K ou,. .
M(l—LJ)—u(l,J)—h (l N+ N 2, J)-;a S Ao G J)—;a S
&)
k* 0’u k’ o'u k* 0'u K ou,. .
u(i,j+1)=ul, J)+k—(l N+ 2,82( L)+ 3,83( L)+ 4,84( L)+ 5,65(,1)+
(6)
k* 0’u kK’ o'u k* 0'u K ou,. .
u(i,j =) =ul,j)- k—( )+ 2,82( LJ) = 3,83( L)+ 4,84( L) = 5,85( L)+
(7)
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Subtracting Eq. (5) from Eq. (4) and Eq. (7) from Eq. (6), we obtain the second order finite
difference (S5 u(i, j)) for the first derivative ofu(i, j):

tati,jy = "D MED g sl = LMD

(8)
h* o’u k* 0’u
where T, =——— i and 7, =———(i,]
e o ) e o o d)
Similarly, adding Eq. (4) with Eq. (5) and Eq. (6) with Eq. (7), we obtain the second order
finite difference (5 u(i, j) ) for the first derivative ofu(i, j):

52u(i, )= u(i+1,j)—2u(i,j)+u(i—1,j)+T

h2 3
oo u(l, j+D)=2u(, j)+u(i,j—1
©)8u(, j)="“ELHD ,i/ Jru 7=l (10)
h otu . . kK> o'u . .
where 7, :—EQ(Z,J) and T, = —Ey(l,j)
Substituting Egs. (4) - (7) into Eqgs. (9) and (10) yields:
P ho'u .
5cxu(l,1)— ( s J)+ 1270 S )+, and
.. ko . .
(11)5iu(l,/)— ( N o BN
(12)
h* o°u k* o°u
here 7. =———(,j) and 7,=——-(i,]
vhere % = g0 v ) “ =360 o )
Using from Eq.(1) and successive differentiation, we have:
ou,. . 10 ou, .. 10%g ... 1o
w(ld):—zy ?(la]))——zy(l . J) _—5“5;”(1’])——2 Py (l J) (13)
otu . . TG P
W(l’ NH=c’ ( =G J))+ (l 7= C@ﬁﬂ(l»}ﬂy(l,ﬁ (14)

Substituting Eqgs. (13) and (14) into Egs.(11) and (12) respectively, gives:
2 2 2
O2ut ) = S5 )+ | 8 ) L) [+,
12\ ¢ c Ox
Su(i ,)_82_u(l, ')+k2 820 u(i _)+82_q(l, ) |+ 7
ct ’J atz ’] 12 ct - ex 3] 81‘2 9] 6
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82 ol 1o .
~ 2 ) =0, /)———6cxés< N+ 82’ i)~ (15)
. k2 K 82 .

y(laj) Sau(i, ])——025“5; (l»])—ﬁa—;z](laj)—% (16)

Again, substituting Egs.(15) and (16) into Eq.(1), we obtain:

2

1 ..
S,ui, J)—* "0505u, )= ( Nty =c[du(, J)—ch 5.0.ui, j)

12 o
h2 1 o’q . . .
S2u(i, )—— 25282u(i, j)—c* S uli, )+—5 u(i, j) h—zaz @G, )+ K 0q (l ) +1, — T+ q(, f)
ct J ot ex J J ex et ]_1282 J 1262 J 5 AW,
u(i, j+1)—2u(i, j)+u(i,j—1 c’k? ) . . . c’ . .
CLED=BODHMOIZD - 862 (ui- LJ)—ZU(I,])JFM(I+1,J))—7{u(l—LJ)

2
—2u(i,j)+u(i+1,j)—czr} Y= ”(u(l J—=D)—=2u(i, j)+u(i, ]+1)) 126 2(1 )+
2
AT

After simplification, we obtain:
(B =k Yui =1, j+1) + (1077 + 26K Yu(, j+1) + (1 = & Ju(i+1,j +1) =
(25 +10°K Ju(i =1, j) + (208 + 2067k Ju(i, j) + (207 +10¢K* Yu(i +1, /)
—(1* =K Yu(i-1,j - 1) = (10h* = 2¢°k* Yu(i, j —1) = (h* = & Ju(i+1,j - 1)+

2 2
12h°k*q(i, j) + h“kz%(i,j) +h’k* 2;] (i, ))+1,

(17)
where 7, =12h°k*(r, —c’t; + c’t, —7,) is a local truncation error.
Eq. (17), can be written as:
ou(@-1,j+D)+ pui,j+)+au(@+1,j+1)=yu(i-1,j)+nu(,j)+
}/u(1+1,])—au(1—1,]—1)—ﬂu(z,]—1)—au(1+1,]—1)+H(z,])
(18)

fori=123,...,N-1 and j=123,... M-1

where
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a=h-ck’

B =101 + 26K
y = 217 +10¢°k
n=20(""-c’k?)

oq . .
i,
atz( J)

2
H@,j)=12nk*q(, j)+h'k’ 2—?(1‘, N+rk
X

For j =0, using the initial conditions Eq. (2) and central finite difference method, we obtain:
. . ou .
u(l,—l)zu(z,l)—2k5(z,0) (19)

Using Eq. (19) into Eq. (18) and putting i-1and i+1 in terms of i at j =0, we get:
2au(i—1,1)+ 2 Bu(i,1)+ 2au(i+1,1) = yu(i —1,0) + nu(i,0) + yu(i +1,0)
ou ou ou
+2koa— (I -1,0)+ 2k —(i,0)+ 2ka— (i +1,0) + H(i,0
at( ) ﬂat( ) ar( )+ H(1,0)
(20)
Thus, using the finite difference schemes given in Egs. (18) and (20), which is a system of

N —1equations that gives an accurate numerical solution of one dimensional wave equation
implicitly using the matrix inverse method.

3. Stability and Convergence Analysis

As cited in [1], [2] and [5], assume that the solution of Eq. (18) at the grid point (i%, jk) is:
u(i, j)=2A'e" (21)

where p =+/—1, 0 isareal number and A is a complex number.

Substituting Eq.(21) into Eq.(18) gives:

a/ﬂtﬁle(z’—l)p@ +ﬂlj+leip9 +aij+]e(i+])p0 — yﬂyje(i—l)pe +nljeipe + ]/ﬂyje(m)pg
_(a;tj—le(i—l)pe +ﬁlj—]eip9 +alj—1e(i+1)pe)+H(l.)j)

= (/’tj” + 17 )(aei”ee"’e + e + aei”ge"e) =1 (ye"e +ne” +ye”e” )+ H(i, j)

= (ae’” + e’ +a)A> —(ye’”’ +ne”’ +y)+(ae*” + Be” +a)+ H(i, j)=0

al*+bl+d =0 (22)

where
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a=ae’” + pe” +a,
b=—(ye’” +ne” +y) and

d=oae’ + pe” +a+H(,))

2 in Eq.(22), we

By using Routh Hurtiz criteria and using the transformation [5], A =

have:
(a—b+d)A+2(a—d)A+(a+b+d)=0 (23)
If |},| <1, then the difference scheme of Eq.(18) is stable. It is sufficient to show that:
b<0anda+d>0
From Eq. (22),
b=—(ye’" +ne”’ +y)=—((2h* +10°k*)e™” +20(h* —*k*)e” +2h* +10c’k? )
=— (217 (e +10e” + 1) +10c°ke” (¢* - 2) +10c’k? )

a+d=ae’” + pe” +a+ae’” + Be” +o+ H(i, j)
=2ae’ +2Be” +2a+H(, )

2 2
=21 (e +10e” +1)+&* (2&(2@’9 —” — 1)+ 121q(, j) + ' ‘2 i, j)+ K ‘2 14, j))
X t
Clearly, for sufficiently smallk, b<0 and a+d >0.

Thus, the finite difference scheme given in Eq. (18) is absolutely stable for wave equation.
Now, expand Eq. (17) in Taylor series and replace the derivatives involving x and ¢ for the
relation,

ou . . du . . .
?(laj)_czg(laj):q(laj) (24)

and then we drive the local truncation error. The principal part of the local truncation error of
the proposed method using Eqs. (10), (12) and (17) for the wave equation is:

TG, ))=12nk*(zr, -1, + 1, —1,)

k* 0°u h* 0°u h* 0‘u k* 0'u
:12h2k2 _~)'_2 _.’._2_ .’.+__ .’,
{360 o D g0 BT e D T e ¢ ])}
4 4
=—Ch'k 2 L))+ K le’ (i, J)+ O(h*k* + B*k")
X

Thus, 7 — 0 as 4 and k£ — 0.

So that, the scheme is consistent with the order of O(h*k* + h*k*). Hence the scheme is
convergent.
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4. Numerical Examples

To validate the applicability of the method, two wave equations have been considered. For
each N, the point wise absolute errors are approximated by the formula,

|EG, )| =|u(x,ot)) —u(, j)| for i=0,1,2,...,Nand j=0,1,2,...,M, where u(x,.t)
and u(i, j)are the exact and computed approximate solution of the given problem
respectively, at the nodal point (7, f).

Example 1: Consider the one dimensional wave equation given as [5]
u,—cu, =0, 0<x<[, t>0

¢ =1, with initial conditions: u(x,0) =cos(zx) and u,(x,0)=0
and boundary conditions: u(0,¢) =cos(x¢) and u(l,t) =—cos(rt)
1 1
The exact solution for this problem is u(x,?) =Ecos(7r(x+l‘)) +Ecos(7r(x—t)). The

numerical solution in terms of point wise absolute errors by comparing with the previous
method is given in Table 1.

Table 1: The comparison of absolute errors for Example 1 at different values of the step size
in the x-direction h and time step size k = 0.0001.

Rashidina and Mohsenyzadeha [5] Our method
X, t, Method | Method Il h=0.05 h=0.025 h=0.01 h =0.005
0.05 0.0003 5e-10 le-9 1.2279e-12  6.8723e-14  1.1102e-15 1.1102e-15
0.05 0.0005 le-10 le-9 3.4114e-12  1.9107e-13  4.1078e-15 3.9968e-15
0.1 0.0003 2.1e-9 7e-10 1.0612e-12  6.6391e-14  2.7756e-15 5.5511e-16
0.1 0.0005 9.7e-9 4e-10 2.9475e-12  1.8463e-13  7.7716e-15 9.9920e-16
0.2 0.0003 6.2e-9 le-10 9.1205e-13  5.6843e-14  1.7764e-15 5.5511e-16
0.2 0.0005 1.3e-8 le-10 2.5338e-12  1.5843e-13  4.8850e-15 1.3323e-15
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Fig. 2. Space-time graph of the solution for Example 1, when 0<¢<1 and £ =0.1=4

Example 2: Consider the non-homogeneous one dimensional wave equation given in [2]

ou ou .

— 5 =sinx, 0<x<rm

ot~ Ox

with the boundary conditions: u(0,¢) =0=u(xr,t); ¢>0
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and initial conditions: u(x,0) =sinx, a—(x, 0)=sinx
t

Exact solution given as: u(x,?) =sinx(1+sin¢) . The numerical solution in terms of absolute
errors is given in Table 2.

Table 2: The comparison of absolute errors for Example 2 at 27 =0.17 and ¢ =0.02.

Zafar et al. [2] Our Method
X, Exact FEM Absolute Fourth order CFDM  ~Psolute
error error

0.000000000 0.000000000 0.000000000 0.000000000 | O 0

0.314159265 0.315196922 0.314917808 0.000279114 | 0.3151973325794360 4.1033e-07
0.628318531 0.599954017 0.599009267 0.000530907 | 0.5995409541370464 7.8050e-07
0.942477796 0.825196256 0.824465508 0.000730748 | 0.8251973298562680  1.0743e-06
1.256637061 0.970076379 0.969217354 0.000859025 | 0.9700776414412834  1.2629¢-06
1.57796327  1.019998667 1.019095436 0.000903231 | 1.019999994553664  1.3279-06
1.884955592 0.970076379 0.969217354 0.000859025 | 0.9700776414412835  1.2629-06
2.199114858 0.825196256 0.824465508 0.000730748 | 0.8251973298562682  1.0743e-06
2.513274123 0.599954017 0.599009267 0.000530907 | 0.5995409541370464 7.8050e-07
2.827433388 0.315196922 0.314917808 0.000279114 | 0.3151973325794360 4.1033e-07
3.141582654 0.000000000 0.000000000 0.000000000 | O 0

Fig. 3. Space-time graph of the solution for Example 2, #=0.17 and £ =0.01.
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5. Discussion and Conclusion

In this paper, we presented fourth order compact finite difference method for solving
quadratic one-dimensional wave equations. To further collaborate the applicability of the
proposed method; tables of point wise absolute error and graphs have been plotted for
Examples 1 and 2, for the exact solution versus the numerical solutions at different values of
mesh size 4 and k. Table 1, shows the absolute errors obtained by fourth order compact finite
difference method have been compared with absolute errors obtained by [5] and it show that
the point wise absolute error decreases as the mesh size 4 decreases, which in turn shows the
convergence of the computed solution. Table 2, also shows the absolute errors obtained by the
present method have been compared with absolute errors obtained by [2]. Generally, the
present method is computationally: stable, effective, simple to use, convergent and give
accuracy solution than some previously existing methods.
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