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Abstract

The aim of the present paper is to investigate effect of thickness on frequency. For this, free vibration analysis of
circular shells is made via ANSYS and numerical method. Discrete singular convolution (DSC) and differential
quadrature methods have been proposed for numerical solution of vibration problem. The formulations are based
on the Love’s first approximation shell. The performance of the present methodology is also discussed.
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1. Introduction

Cylindrical shells are widely used in many engineering applications such as
mechanical, civil and aerospace engineering. Rotating circular shell structures are
increasingly being used in many engineering applications like aviation, rocketry, missiles,
chemical, aero-space, civil and mechanical industries. Thus, frequencies and mode shapes of
such structures are important in the design of systems [1-4]. As a consequence, a number of
analytical and numerical methods have been also studied on the vibration analysis of circular
cylindrical shells [5-12]. In this study, free vibration analysis of rotating and non-rotating
cylindrical shells is investigated by the method of DSC and DQ approaches. Also, the
ANSYS program has been used for some analyses.

2. Fundamental equations

Consider a cylindrical shell rotating about its symmetrical and horizontal axis at an
angular velocity was shown in Figure 1. The thickness of the shell, and cone length are
denoted by 4 and L, respectively. The cylindrical shell is referred to a coordinate system (x, 6,
z) as shown in Figure 1. The components of the deformation of the cylindrical shell with
references to this coordinate system are denoted by u, v, w in the x, 6 and z directions,
respectively.
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Fig.1. Geometry of a thin rotating cylindrical shell.

Following the Love’s first approximation shell theory [12] governing equations for free
vibration analysis of cylindrical shells can be given as [39,40];
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3. Discrete Singular Convolution (DSC)
The discrete singular convolutions (DSC) algorithm was originally introduced by Wei
[13]. Since then, applications of the DSC method to various science and engineering

problems have been investigated and their successes have demonstrated the potential of the
method as an attractive numerical analysis technique [14-20]. In this paper, details of the DSC

28



K. Mercan et al

method are not given; interested readers may refer to the works of [13-17]. Consider a
distribution, 7 and #(#) as an element of the space of the test function. A singular convolution

can be defined by [15]

F@)=(T*n(t)= [T(t~x)(x)dx (11)

— 00

where 7'(¢t—x)is a singular kernel. The DSC algorithm can be realized by using many

approximation kernels. However, it was shown [21-28] that for many problems, the use of the
regularized Shannon kernel (RSK) is very efficient. The RSK is given by [16]

sin[(7/A)(x — x;)] exp| — (x— xk)z
(w/A)(x = xy) 242

5A,U(X—xk)= 5 o>0 (12)

where A=n/(N-1) is the grid spacing and N is the number of grid points. The parameter o
determines the width of the Gaussian envelope and often varies in association with the grid
spacing, i.e., o = rh. In the DSC method, the function f (x) and its derivatives with respect to
the x coordinate at a grid point x; are approximated by a linear sum of discrete values f (xx) in
a narrow bandwidth [x-xy;, x+xy ]. This can be expressed as [21]

d" f(x)

d x"

_ f(”)(x) ~ AZ/[: 52’3)6(xl__xk)f(xk); (n=0,1,2,...,) (13)

X = xj k=-M

where superscript n denotes the nth-order derivative with respect to x. Beams, plates and
shells have been successfully solved via DSC method by this time [22-38]. Also, some macro
and nano structures analyzed by DSC [60,61].

4. Differential quadrature (DQ) method

In the DQ method, a partial derivative of a function with respect to a space variable at a
discrete point is approximated as a weighted linear sum of the function values at all discrete
points in the region of that variable [41-59]. For simplicity, we consider a one-dimensional
function u(x) in the [-1,1] domain, and N discrete points. Then the first derivatives at point i,
atx =x; 1s given by

ou N .
uy(xp) = — = % gyuxp);s  P=L2..N, (14)
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where x; are the discrete points in the variable domain, u(x;) are the function values at these
points and 4;; are the weighting coefficients for the first order derivative attached to these
function values. Two methods can possible to determine the weighting coefficients. The first
one is to let equation (1) be exact for the test functions
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which leads to a set of linear algebraic equations

k1. for i=12,..,.Nand k=1,2,...,N. (16)

k-2 N
(k_l)xi_ = Z Al/ Jj

j=1

which represents N sets of N linear algebraic equations. Another way to determine the
weighting coefficients is to employ harmonic functions, named the harmonic differential
quadrature (HDQ). Harmonic differential quadrature has been proposed by Striz et al. [22].
Unlike the DQ that uses the polynomial functions, such as power functions, Lagrange
interpolated, and Legendre polynomials as the test functions, HDQ uses harmonic or
trigonometric functions as the test functions. Shu and Xue proposed an explicit means of
obtaining the weighting coefficients for the HDQ [53]. When the f(x) is approximated by a

Fourier series expansion in the form [42-50]

N/2 k k
fx) =co+ Z(ckcosTm+dksinTm), (17)

k=1

and the Lagrange interpolated trigonometric polynomials are taken as [52,53]
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for k=0,1,2,....,N. According to the HDQ, the weighting coefficients of the first-order
derivatives 4; for i #j can be obtained by using the following formula:
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where
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The weighting coefficients of the second-order derivatives Bj; for i #j can be obtained using
the following formula:
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The weighting coefficients of the first-order and second-order derivatives 4;”’ fori = are

given as

N .
AP -— 3 Al(jP) ; p=1lor2;andfor i=12,..,N,
j=1Lj=i

(22)

The weighting coefficient of the third and fourth order derivatives can be computed easily
from 4;;and B;;by

N N
X Ay By s Dj= XByBy- (23)
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Two different types of sampling grids are taken into consideration in this study. A natural,
and often convenient, choice for sampling points is that of equally spaced grid (ES-G) points.
These points are given by,

i1 i1
Type-I:xl-=l—1 and y, = ———, (24)

N, -1

X

in the related directions. Sometimes, the DQ solutions deliver more accurate results with
unequally spaced sampling points. Another choice that is found to be even better than the
Chebyshev and Legendre polynomials is the set of points proposed by Shu and Richards [52].
These points are given as

Type-IL: xl-z%{l—cos( 271 )n’}and yizl{l—cos( 21 )n':l- (25)

Ny—1 2 Ny—l

in the x- and y- directions, respectively. These type grid points are known the Chebyshev-
Gauss-Lobatto or non-equally spaced grid (NES-G) points. The displacement terms are taken
as

u=U(x)-cos(nb)-cos(mt), (26a)
v =V(x)-sin (nf)-cos(at), (26b)
w =W(x)-cos(nb)-cos(wt). (26¢)

where @ is referred to as the frequency parameter. Substituting Equations (14) into Equations
(1), the governing equations can be written as

[G,1{D} =0 27)
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In this study, the numerical results are given by the dimensionless frequency parameter €2,
defined as

o=p, [P, (28)
A

5. Numerical results

Some results have been presented for rotating and non-rotating shells. Firstly, frequency
values for non-rotating shells have been presented in Table 1. The results produced by DSC
and DQ are close agreement with the literatures. In this study, we used the classical shell
theory. The differences amongst the results occurred from the different shell theory between
this study and literature results (3-D elasticity and FSDT). Secondly, the effect of thickness on
frequency for rotating shells is investigated and results presented in Table 2. Both the DSC
and DQ produced very good results for 11 grid numbers. When we increase the same rate of
thickness and length the frequency decreased interestingly. The results depicted in Fig. 2. For
this graph the following values have been used : E=68.2 GPa, p=2700 kg/m’, v=0.33,
L=1.7272 m, R=0.0762 m, h=0.00147 m. The results obtained via ANSY'S packed programs.

Table 1. Frequency parameters of S-S cylindrical shells (h/ R=0.05;R/L=0.05;m=1)

n Ref.6 Ref.7 Present Present
DSC DQ

2 0.039233 0.039819 0.039317 0.039319

3 0.109477 0.109898 0.109620 0.109621

4 0.209008 0.210310 0.209975 0.209978

Table 2. Frequency values (Q = wR+/ pil -v° i/ E ) of rotating isotropic cylindrical shells
(L/R=10; v=0.3; A=0.005 rps) with C-C boundary conditions

Present DSC Result Present DQ Result
(11x11) 11x11
Mode h/R=0.02 h/R=0.05 h/R=0.02 h/R=0.05
numbers
2 0.04133 0.05409 0.04134 0.05409
3 0.04769 0.11043 0.04772 0.11043
4 0.08143 0.21003 0.08148 0.21001
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Fig. 2. The effect of thickness on frequency

6. Conclusions

It is shown that, the method of DSC and DQ have capable to give accurate results for
rotating or non-rotating shells. The effect of other parameters on frequency have also been
under consideration and published in the next.
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