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Abstract 
 
The aim of the present paper is to investigate effect of thickness on frequency. For this, free vibration analysis of 
circular shells is made via ANSYS and numerical method. Discrete singular convolution (DSC) and differential 
quadrature methods have been proposed for numerical solution of vibration problem. The formulations are based 
on the Love’s first approximation shell. The performance of the present methodology is also discussed. 
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1. Introduction 

Cylindrical shells are widely used in many engineering applications such as 
mechanical, civil and aerospace engineering. Rotating circular shell structures are 
increasingly being used in many engineering applications like aviation, rocketry, missiles, 
chemical, aero-space, civil and mechanical industries. Thus, frequencies and mode shapes of 
such structures are important in the design of systems [1-4]. As a consequence, a number of 
analytical and numerical methods have been also studied on the vibration analysis of circular 
cylindrical shells [5-12]. In this study, free vibration analysis of rotating and non-rotating 
cylindrical shells is investigated by the method of DSC and DQ approaches.  Also, the 
ANSYS program has been used for some analyses. 

 
 

2. Fundamental equations 
 

Consider a cylindrical shell rotating about its symmetrical and horizontal axis at an 
angular velocity ωas shown in Figure 1. The thickness of the shell, and cone length are 
denoted by h and L, respectively. The cylindrical shell is referred to a coordinate system (x,, 
z) as shown in Figure 1.  The components of the deformation of the cylindrical shell with 
references to this coordinate system are denoted by u, v, w in the x,  and z directions, 
respectively.   
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Fig.1. Geometry of a thin rotating cylindrical shell. 
 

 
Following the Love’s first approximation shell theory [12] governing equations for  free 

vibration analysis of cylindrical shells can be given as [39,40];  
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3. Discrete Singular Convolution (DSC) 
 

The discrete singular convolutions (DSC) algorithm was originally introduced by Wei 
[13].  Since then, applications of the DSC method to various science and engineering 
problems have been investigated and their successes have demonstrated the potential of the 
method as an attractive numerical analysis technique [14-20]. In this paper, details of the DSC 
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method are not given; interested readers may refer to the works of [13-17]. Consider a 
distribution, T and )(tη as an element of the space of the test function. A singular convolution 
can be defined by [15] 
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where )( xtT  is a singular kernel. The DSC algorithm can be realized by using many 
approximation kernels. However, it was shown [21-28] that for many problems, the use of the 
regularized Shannon kernel (RSK) is very efficient. The RSK is given by [16] 
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where =/(N-1) is the grid spacing and N is the number of grid points. The parameter  
determines the width of the Gaussian envelope and often varies in association with the grid 
spacing, i.e.,  = rh. In the DSC method, the function f (x) and its derivatives with respect to 
the x coordinate at a grid point xi are approximated by a linear sum of discrete values f (xk) in 
a narrow bandwidth [x-xM, x+xM ]. This can be expressed as [21] 
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where superscript n denotes the nth-order derivative with respect to x. Beams, plates and 
shells have been successfully solved via DSC method by this time [22-38]. Also, some macro 
and nano structures analyzed by DSC [60,61]. 
 
4. Differential quadrature (DQ) method 
 

In the DQ method, a partial derivative of a function with respect to a space variable at a 
discrete point is approximated as a weighted linear sum of the function values at all discrete 
points in the region of that variable [41-59]. For simplicity, we consider a one-dimensional 
function u(x) in the [-1,1] domain, and N discrete points. Then the first derivatives at point i, 
at x = xi   is given by 
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where xj are the discrete points in the variable domain, u(xj) are the function values at these 
points and Aij are the weighting coefficients for the first order derivative attached to these 
function values. Two methods can possible to determine the weighting coefficients. The first 
one is to let equation (1) be exact for the test functions 
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which leads to a set of linear algebraic equations 
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which represents N sets of N linear algebraic equations. Another way to determine the 
weighting coefficients is to employ harmonic functions, named the harmonic differential 
quadrature (HDQ). Harmonic differential quadrature has been proposed by Striz et al. [22]. 
Unlike the DQ that uses the polynomial functions, such as power functions, Lagrange 
interpolated, and Legendre polynomials as the test functions, HDQ uses harmonic or 
trigonometric functions as the test functions. Shu and Xue proposed an explicit means of 
obtaining the weighting coefficients for the HDQ [53]. When the )(xf  is approximated by a 
Fourier series expansion in the form [42-50] 
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and the Lagrange interpolated trigonometric polynomials are taken as [52,53] 
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for k = 0,1,2,....,N. According to the HDQ, the weighting coefficients of the first-order 
derivatives Aij

   for  i  j can be obtained by using the following formula: 
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The weighting coefficients of the second-order derivatives Bij

 for i  j can be obtained using 
the following formula: 
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The weighting coefficients of the first-order and second-order derivatives Aij

(p)   for i = j  are 
given as 
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The weighting coefficient of the third and fourth order derivatives can be computed easily 
from Aij and Bij by  
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Two different types of sampling grids are taken into consideration in this study. A natural, 
and often convenient, choice for sampling points is that of equally spaced grid (ES-G) points. 
These points are given by, 
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in the related directions. Sometimes, the DQ solutions deliver more accurate results with 
unequally spaced sampling points. Another choice that is found to be even better than the 
Chebyshev and Legendre polynomials is the set of points proposed by Shu and Richards [52]. 
These points are given as 
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in the x- and y- directions, respectively. These type grid points are known the Chebyshev-
Gauss-Lobatto or non-equally spaced grid (NES-G) points. The displacement terms are taken 
as 
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where  is referred to as the frequency parameter. Substituting Equations (14) into Equations 
(1), the governing equations can be written as 
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In this study, the numerical results are given by the dimensionless frequency parameter , 
defined as 


A
ρh

RΩ
11
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5. Numerical results  
 
Some results have been presented for rotating and non-rotating shells. Firstly, frequency 
values for non-rotating shells have been presented in Table 1. The results produced by DSC 
and DQ are close agreement with the literatures. In this study, we used the classical shell 
theory. The differences amongst the results occurred from the different shell theory between 
this study and literature results (3-D elasticity and FSDT). Secondly, the effect of thickness on 
frequency for rotating shells is investigated and results presented in Table 2. Both the DSC 
and DQ produced very good results for 11 grid numbers. When we increase the same rate of 
thickness and length the frequency decreased interestingly. The results depicted in Fig. 2. For 
this graph the following values have been used : E=68.2 GPa, ρ=2700 kg/m3, ʋ=0.33,  
L=1.7272 m, R=0.0762 m, h=0.00147 m. The results obtained via ANSYS packed programs. 
 
 

Table 1. Frequency parameters of S-S cylindrical shells (h/ R=0.05;R/L=0.05;m=1) 
 

n Ref.6 
 

Ref.7 
 

Present 
DSC 

Present 
DQ 

2 0.039233 0.039819 0.039317 0.039319 
3 0.109477 0.109898 0.109620 0.109621 
4 0.209008 0.210310 0.209975 0.209978 

 
 

Table 2. Frequency values (   ER /1 2  ) of rotating isotropic cylindrical shells 
(L/R=10; υ=0.3; λ=0.005 rps) with C-C boundary conditions  

 

 Present DSC Result 
(1111) 

Present DQ Result 
1111 

Mode 
numbers h/R=0.02 h/R=0.05 h/R=0.02 h/R=0.05 

2 0.04133 0.05409 0.04134 0.05409 
3 0.04769 0.11043 0.04772 0.11043 
4 0.08143 0.21003 0.08148 0.21001 
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Fig. 2. The effect of thickness on frequency 
 
 
6. Conclusions 
 

 It is shown that, the method of DSC and DQ have capable to give accurate results for 
rotating or non-rotating shells.  The effect of other parameters on frequency have also been 
under consideration and published in the next.  
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