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Abstract 

In the present study, free vibration of functionally graded (FG) nanobeam is investigated. The variation of 

material properties is assumed in the thickness direction according to the power law. FG nanobeam is modeled 

as Euler-Bernoulli beam with different boundary conditions and investigated based on Eringen’s nonlocal 

elasticity theory. Governing equations are derived via Hamilton principle. Frequency values are found by using 

finite element method. FG nanobeam is composed of silicon carbide (SiC) and stainless steel (SUS304). The 

effects of dimensionless small-scale parameters (e0a/L), power law exponent (k) and boundary conditions on 

frequencies are examined for FG nanobeam. 
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1. Introduction 

Functionally graded materials (FGMs) are defined as special composites which material 

properties change continuously along with direction of the material. FGMs are mostly 

composed of ceramic and metal. Thus the ceramic can resist high temperature in thermal 

environments, while the metal can reduce the stress occurring on the ceramic surface at the 

earlier case of cooling. FGMs are utilized in various applications such as aviation, 

mechanical, electronics, nuclear, optics, chemical, biomedicine and civil engineering [1-2]. 

The classical continuum theories lose their validity when the dimensions are reduced because 

they lack internal/additional material small-scale parameters. For this reason, some 

researchers have been used some higher order theories that take into account small-scale 

effect analysis of micro and nano structures [3-5]. Among higher order theories, nonlocal 

elasticity theory [6] have been widely studied recently [7-21]. Ebrahimi et al. [2] presented 

the applicability of differential transformation method (DTM) in investigations on vibrational 

characteristics of FG size-dependent nanobeams. Civalek and Demir [22] developed elastic 

beam model using nonlocal elasticity theory and Euler–Bernoulli beam theory for the bending 
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analysis of microtubules (MTs). Kadıoğlu and Yaylı [23] studied buckling analysis of a nano 

sized beam by using Timoshenko beam theory and Eringen’s nonlocal elasticity theory. 

Zargaripoor et al. [24] investigated free vibration of functionally graded nanoplate by using 

Eringen’s nonlocal theory. 

In this study, vibration characteristics of FG nanobeams are investigated. The variation of 

material properties is assumed in the thickness direction based on the power law. FG 

nanobeam is composed of silicon carbide (SiC) and stainless steel (SUS304). Governing 

equations are derived via Hamilton principle. The vibration behaviours of SiC/SUS304 FG 

nanobeam with simply-supported (S-S) and clamped-clamped (C-C) boundary conditions are 

analyzed using nonlocal finite element formulation. The effects of small-scale parameters 

(e0a/L), power law exponents (k) and boundary conditions on frequencies are examined for 

FG nanobeam.  

2. Functionally Graded Euler-Bernoulli Beam 

 
 

Fig. 1. Ilustration of FG beam 

L, b and h are length, width and thickness of the FG beam, respectively. The material 

properties of the beam are assumed to vary continuously in the thickness direction. The 

effective material property of FG beam is expressed by the power law as follows [9] 
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Here P(z) is the effective material property of the beam, PU  and PL  are the material property 

at the upper and lower surfaces of the beam, k is the power law exponent (non-negative 

variable parameter). P(z) indicates to the properties of the beam components such as the 

elastic module (E), density (ρ) etc. and can be transformed into the following forms 
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Fig. 2. The variation of material properties through the thickness direction 

The displacements for Euler-Bernoulli beam can be written as follows [13] 
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2( , , ) 0u x z t  (4b) 

 
3( , , ) ( , )u x z t w x t (4c) 

Here u1, u2 and u3 are the displacements in the x, y, z directions, respectively. u and w denote 

longitudinal and transverse displacements of any point on the neutral axis, respectively. 

Strains of the Euler-Bernoulli beam as follows 
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εxx is the non-zero only strain component. Stress, normal force and moment expressions for 

the functionally graded beam are written as follows 
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A1, B1 ve D1 are expressed as 
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The Hamilton principle to be used to obtain equations of motion is expressed as follows [25] 
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Where S and T are the strain energy and kinetic energy, respectively. S and T for an element 

which has volume V and length L is as below 
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The first variation of the strain and kinetic energy are obtained as follows 
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Here I0, I1 and I2 are expressed as 
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Substituting Equations (12) and (13) into Equation (9), we obtain the equilibrium equations 

from the Euler-Lagrange equation as follows 
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3. Nonlocal Functionally Graded Nanobeam 

The nonlocal constitutive formulation is [6] 
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Where σij is the stress tensor, Cijkl is the fourth-order elastic module tensor, εkl is the strain 

tensor, e0 is a material constant which is determined experimentally, a is the internal 

characteristic length. For Euler–Bernoulli FG nanobeam, Equation (17) can be rewritten as 

 

 
 

2
2

0 2
( )xx

xx xxe a E z
x


 


 


 (18) 

Integrating Equation (18) over the cross-section area, we obtain the axial force-strain relation 

as 
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Multiplying Equation (18) by z and integrating over the cross-section area, we get the 

moment-curvature relation as 
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Differentiating Equation (15) with respect to x, then substituting Equation (19) we obtain 

Equation (21). And substituting Equation (16), we obtain Equation (22). 
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4. Finite Element Formulation 

The variational statement of FG Euler–Bernoulli nanobeam has the following form 
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ϕu and ϕw are the interpolation shape functions and they are expressed as below  
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The stiffness matrices ( ,uK ,uwK wK ), the classical mass matrices ( ,c
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uwM c

wM ) and the 

nonlocal mass matrices ( ,nl

uM ,nl

uwM nl

wM ) are obtained using Equations (23)-(25) as follows 
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The frequencies of FG nanobeam are found as follows 
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Here ω is frequency. K and M are total stiffness and mass matrices and given in Equations 

(36) and (37) 
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5. Numerical Results for Free Vibration of FG Nanobeam 

In this section frequency values of SiC/SUS304 FG nanobeam are obtained with various 

dimensionless small-scale parameters (e0a/L), power law exponents (k) and different 

boundary conditions such as S-S and C-C. The bottom surface of the beam is pure metal 

(SUS304) whereas the top surface of the beam is pure ceramic (SiC). Mechanical properties 

of nanobeam constituents are given in Table 1. Geometrical properties of the FG nanobeam 

are: b (width) = 100 nm, h (thickness) = 200 nm and L (length) = 10000 nm. 

 

Table 1. Properties of FG nanobeams constituents [26] 

 
Properties 

E (Gpa) )3ρ (kg/m 

Silicon Carbide (SiC) 

Stainless Steel (SUS304) 

427 

207.78 

3210 

8166 

 

The frequency values obtained from the analyses of S-S FG nanobeam and C-C FG nanobeam 

with various e0a/L ranging from 0 to 0.5 and various k ranging from 0 to 10 are presented in 

Table 2 and Table 3, respectively. 

 

 
 

Fig. 3. Functionally graded S-S nanobeam 

 

Table 2. Variation of first five frequencies (MHz) of FG nanobeam with k and e0a/L (S-S) 

k 
ω 

(MHz) 

a/L0e 

0 0.1 0.2 0.3 0.4 0.5 

0 1ω 10.4580 9.9772 8.8551 7.6106 6.5120 5.6163 

2ω 41.8114 35.4031 26.0350 19.5949 15.4576 12.6820 

3ω 93.9986 68.4054 44.0524 31.3427 24.1004 19.5126 

4ω 166.9175 103.9357 61.7090 42.7962 32.5689 26.2355 

5ω 260.4264 139.8566 78.9911 54.0604 40.9330 32.8930 

0.2 1ω 8.8233 8.4177 7.4710 6.4210 5.4941 4.7384 

2ω 35.2750 29.8685 21.9649 16.5316 13.0411 10.6994 

3ω 79.3007 57.7093 37.1643 26.4418 20.3320 16.4616 

4ω 140.8103 87.6793 52.0573 36.1025 27.4749 22.1321 

5ω 219.6787 117.9739 66.6317 45.6018 34.5284 27.7464 

2 1ω 6.1069 5.8262 5.1709 4.4442 3.8026 3.2796 

2ω 24.4163 20.6741 15.2035 11.4427 9.0266 7.4058 

3ω 54.8939 39.9478 25.7260 18.3037 14.0743 11.3951 

4ω 97.4831 60.7005 36.0393 24.9938 19.0209 15.3221 

5ω 152.1054 81.6851 46.1358 31.5747 23.9074 19.2116 

5 1ω 5.5038 5.2508 4.6602 4.0052 3.4271 2.9557 
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2ω 22.0051 18.6325 13.7021 10.3127 8.1352 6.6745 

3ω 49.4742 36.0037 23.1861 16.4965 12.6848 10.2701 

4ω 87.8615 54.7093 32.4822 22.5269 17.1435 13.8098 

5ω 137.0985 73.6259 41.5840 28.4595 21.5487 17.3161 

10 1ω 5.1688 4.9312 4.3766 3.7615 3.2185 2.7758 

2ω 20.6658 17.4984 12.8681 9.6850 7.6401 6.2682 

3ω 46.4626 33.8121 21.7747 15.4924 11.9126 9.6449 

4ω 82.5120 51.3783 30.5045 21.1554 16.0997 12.9690 

5ω 128.7487 69.1418 39.0514 26.7262 20.2363 16.2615 

 
 

Fig. 4. Functionally graded C-C nanobeam 

Table 3. Variation of first five frequencies (MHz) of FG nanobeam with k and e0a/L (C-C) 

k 
ω 

(MHz) 

a/L0e 

0 0.1 0.2 0.3 0.4 0.5 

0 1ω 23.7062 22.3654 19.3760 16.2643 13.6693 11.6421 

2ω 65.3103 53.9796 38.5572 28.5806 22.3751 18.2819 

3ω 127.9220 90.6560 57.6512 41.0566 31.6753 25.7224 

4ω 211.2074 128.1562 75.6097 52.4448 39.9337 32.1811 

5ω 315.0270 165.2416 93.2586 64.0399 48.6300 39.1599 

0.2 1ω 20.0006 18.8694 16.3471 13.7218 11.5325 9.8221 

2ω 55.1000 45.5403 32.5288 24.1120 18.8767 15.4234 

3ω 107.9189 76.4787 48.6349 34.6354 26.7212 21.6993 

4ω 178.1710 108.1072 63.7804 44.2395 33.6858 27.1461 

5ω 265.7327 139.3795 78.6615 54.0159 41.0180 33.0302 

2 1ω 13.8432 13.0603 11.3147 9.4976 7.9823 6.7985 

2ω 38.1389 31.5225 22.5165 16.6905 13.0666 10.6763 

3ω 74.7053 52.9434 33.6689 23.9776 18.4989 15.0223 

4ω 123.3507 74.8490 44.1601 30.6307 23.3236 18.7956 

5ω 183.9983 96.5172 54.4729 37.4063 28.4054 22.8738 

5 1ω 12.4760 11.7704 10.1972 8.5597 7.1940 6.1271 

2ω 34.3727 28.4098 20.2932 15.0425 11.7765 9.6222 

3ω 67.3299 47.7170 30.3455 21.6109 16.6729 13.5395 

4ω 111.1767 67.4631 39.8028 27.6084 21.0223 16.9411 

5ω 165.8462 86.9977 49.1007 33.7173 25.6041 20.6181 

10 1ω 11.7167 11.0541 9.5766 8.0387 6.7562 5.7542 

2ω 32.2807 26.6807 19.0580 14.1269 11.0597 9.0365 

3ω 63.2313 44.8121 28.4980 20.2951 15.6578 12.7152 

4ω 104.4073 63.3549 37.3788 25.9271 19.7421 15.9094 

5ω 155.7450 81.6980 46.1094 31.6632 24.0442 19.3619 
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(a) (b) 
 

Fig. 5. The variation of the frequencies with mode numbers for different e0a/L (S-S) 

(a) k=0  (b) k=10 
 

 

 (a)  (b) 
 

Fig. 6. The variation of the frequencies with mode numbers for different e0a/L (C-C) 

(a) k=0  (b) k=10 

 

The effects of mode number on the frequency are respectively shown in Fig. 5 and Fig. 6. The 

frequency values of FG nanobeam increase as the mode number increase. 
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Fig. 7. The variation of the frequencies with e0a/L (k=5) 

The effects of e0a/L (small-scale parameters) on the frequency are depicted in Fig. 7. The 

frequency values of FG nanobeam decrease as e0a/L increases. 

 

 

Fig. 8. The variation of the frequencies with k (e0a/L=0.1) 

The effects of k (power law exponent) on the frequency are depicted in Fig. 8. The frequency 

values of FG nanobeam decrease as k increases. Also it is clearly observed from the tables and 

figures that the frequency values of C-C boundary condition higher than the frequency values 

of S-S boundary condition. 
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6. Conclusions 

Due to the small-scale effect, the properties and behaviours of nano structures are different 

from macro structures. In this paper, free vibration analysis of FG nanobeam composed of 

SiC and SUS304 is investigated based on the nonlocal elasticity theory and Euler-Bernoulli 

beam theory. Finite element method is a powerful numerical method. A nonlocal finite 

element formulation is developed for free vibration analysis of FG nanobeams, in this study. 

Solutions are obtained for S-S and C-C FG nanobeams. According to the obtained results 

 By increasing e0a/L, the frequency values decrease. 

 Frequencies decrease with increasing k value. 

 The frequency values of S-S smaller than the frequency values of C-C. 

 The frequency values increase as the mode number increase. 

 As the k increases, the properties of the FG nanobeam transform from ceramic to metal. 
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