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Abstract 

In the present study, vibration of micro/nano beams on Winkler foundation is studied using Eringen's nonlocal elasticity 
theoy. Hamilton’s principle is employed to derive the governing equations. Differential transform method is used to 
obtain result. Simply supported and clamped–clamped boundary conditions are used to study natural frequencies. The 
effect of nonlocal parameter and Winkler elastic foundation modulus on the natural frequencies of the nonlocal Euler-
Bernoulli beam is investigated and tabulated. The differential transform method is applicable for micro/nano beams and 
gives high accuracy results. 
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1. Introduction 

Nanoscience and nanotechnology have made a major contribution to the introduction of small-scale 
structures and devices. Some of the potential applications of nanorods and nanobeams are image 
technology, microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS). 
Nanorod and nanobeam, together with other noble metal nanoparticles function as teranostatic 
agents. Nanorod and nanobeam absorb infrared rays. They also generate heat when the infrared rays 
are passing through them. This feature allows the use of nanorod and nanobeam in cancer treatment. 
When a patient is exposed to infrared light, nanorods selectively pick up tumor cells which are 
heated locally and only destroy cancerous tissue, but healthy cells are left intact. Nanorods and 
beams which are produced as semiconductor materials can be used as nanosensors and nanoactuators 
as energy collection, sensing and light emission applications. 

In many engineering applications, mechanical behavior must be investigated and well defined to 
increase the use of nanoscale systems with such a wide range of applications and to propose new 
designs. This problem can be solved by molecular dynamic simulations, but it requires too much 
computational effort and therefore a lot of time is required. For this reason, researchers have been 
directed to continuum mechanics and nano systems have been modeled as rods, beams, plates, shells. 
Classical theories can interpret behavior of structures up to a certain size [1-16]. To incorporate the 
small-scale effect into account, nonlocal elasticity theories are proposed. The most widely known of 
these is the nonlocal elasticity theory of Eringen[17]. Extensive studies have been conducted on the 
mechanical properties of micro/nano beam such as static bending [18-29], free vibration [20, 30-41], 
and buckling [42-52]. 

In this present paper the vibration of nano / micro beams resting on elastic foundation with simply 
supported and clamped-clamped boundary conditions is investigated. Euler Bernoulli beam theory 
and nonlocal elasticity theory is used. The interaction of the elastic medium with the micro/nano 
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beam is considered as the Winkler type foundation model. Numerical results were obtained for the 
vibration with the differential transform method. The effect of the nonlocal parameter, the Winkler 
foundation parameter and modes for micro/nano beam of frequency is discussed and tabulated. 

2. Nonlocal Euler-Bernoulli Beam Model  

2.1. Nonlocal Elasticity 

According to the nonlocal elasticity theory of Eringen [1], the stress at any reference point is 
effecting the whole body which not depends only on the strains at this point but also on strains at all 
points of the body. This definition of the Eringen’s nonlocal elasticity is based on the atomic theory 
of lattice dynamics, and some experimental observations on phonon dispersion. The simplified 
version of the Eringen nonlocal elasticity theory is as followed, 

klklσae  ])(1[ 22
0       (1) 

where e0 is a material constant, and a is the internal characteristic lengths, respectively. The specific 
form of the Eq. (1) for Euler-Bernoulli beams, [17]
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The nonlocal moment resultants for Euler-Bernoulli beam can be obtained via Eq. (2) as 
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2.2. Governing equations of beam based on nonlocal elasticity 
 
The displacement field based on the classical Euler-Bernoulli beam theory can be written  
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where ‘ w ‘ is the transverse displacement of the beam. The strain-displacement, stress-strain 
equations and general expression of bending moment according to Euler-Bernoulli beam theory can 
be written as 
 

),(2

2

tx
x
wz

x
uεxx 







 ,
 
 ),(2

2

tx
x
wEzxx 


  , 

A
xxdAzM     (5) 

 
The generalized Hamilton’s principle is as it shown below 
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The strain and kinetic energies and work of the classical Euler-Bernoulli beam can be stated as  
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Substitution of Eq. (7) into Eq. (6) and when the necessary arrangements are made according to Eq. 
(5) leads to 
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When Eq. (8) is equal to zero under double integral, differential equations of motion becomes 
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Substitution of Eq. (9) into Eq. (3) leads to  
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Finally, by substituting Eq. (18) into Eq. (15), we obtain the governing equations for nonlocal Euler  
Bernoulli beam [23, 45, 53, 54] 
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The essential boundary conditions 
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The natural boundary conditions  
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In the equation; kw is the Winkler spring constant, w is deflection, ρ is density, A is cross-sectional 
area, E is young modulus, I is moment of inertia and t is time. When analyzing the vibration of the 
Euler-Bernoulli beam resting on Winkler elastic foundation, 
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If Eq.(14) is substituted in Eq.(11) the equation of motion becomes 
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2.3. Nondimensional Form of the Equation 
 
The nondimensional parameters of the Euler-Bernoulli beam resting on the Winkler elastic 
foundation can be expressed as 
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When these parameters are used, Eq. (15) becomes 
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and nondimensional boundary conditions 
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2.4. The Differential Transform Method (DTM) 
 
The differential transformation method is a transformation method based on Taylor series expansion. 
In this method, certain conversion rules are applied. The differential equations and boundary 
conditions are transformed into a set of equations which is the differential transformation of the main 
function. The solution of the obtained equations gives the result of the problem. Theorems used in 
DTM solutions are given in Table 1-2 [53,55] 
 

Table 1. DTM theorems used for equations of motion. 
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Table 2. DTM theorems used for boundary conditions 
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Firstly, the DTM form of Eq. (17), which models the Euler-Bernoulli beam resting on Winkler 
foundation, needs to be written. Applying the rules given in Table 1, the equation becomes: 
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2.5. Case study for boundary conditions 
 

 Clamped-Clamped  
 
The nondimensional boundary conditions for this case can be defined as follows 
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Using Table 2, the transformed boundary conditions can be written as: 
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It is assumed that W (2) = c and W (3) = d, and frequencies can be obtained if the boundary 
conditions apply to Eq. (19). The equation is calculated for n terms. The more the number of 
terms, the more accurate the result will be. 
 
 Simple-simple 
 
The boundary conditions for this case are defined as 
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Using Table 2, the transformed boundary conditions can be written as: 
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It is assumed that W (1) = c and W (3) = d and the same method with clamped-clamped 
boundary conditions applied for the solution. 
 
3. Numerical Result 
 
In this section, numerical results will be obtained by the DTM described in the previous section. 
Since it is working in nondimensional form, the nondimensional Winkler spring constant and 
nondimensional small scale effect are sufficient to calculate the results. In this study, simple-
simple and clamped-clamped boundary conditions are applied. Firstly, the results are compared 
for the Euler-Bernoulli nonlocal beam resting on Winkler elastic foundation with current 
literature. Togun [54] has studied the nonlinear vibrations of an Euler-Bernoulli nanobeam 
resting on an elastic foundation using nonlocal elasticity theory. It is seen that in Table 3, there is 
a great harmony when the results are compared with Togun[54]. The effect of the nonlocal 
parameter ( ) and the Winkler foundation parameter (k) on the natural frequency is presented in 
Table 4 for various boundary conditions (simply supported and clamped-clamped, respectively). 
Nondimensional nonlocal parameter with  =0, 0.05, 0.1, 0.15, 0.2 and nondimensional Winkler 
foundation parameters with k=0, 1, 10, 100, 1000, 10000, respectively. It can be said that for 
both support conditions, the Winkler foundation parameter increases the natural frequency and 
the nonlocal parameter decreases the natural frequency. Because increasing Winkler foundation 
parameters increases the stiffness of the beam. It can be clearly seen that the results obtained 
from nonlocal elasticity theory for boundary conditions are always smaller from the classical 
results. Also the frequency of clamped-clamped boundary condition is always higher than simply 
supported. The results are calculated for 30 terms for DTM. As the number of terms increases, it 
is clear that the solution will be more accurate. 
 

Table 3. Comparative result for simple-simple boundary condition 
         

    
 

k  Ref [54] Present 
10 0 10.3638 10.3638 
 0.1 9.93271 9.93271 
 0.2 8.93522 8.93522 
 0.3 7.84771 7.84771 
 0.4 6.91145 6.91145
 0.5 6.17194 6.17194
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Table 4. Nondimensional natural frequency resting on Winkler foundation for simply supported 
and clamped-clamped boundary condition 

 
Simply Supported  Clamped-Clamped 

k  ω1 ω2 ω3  ω1 ω2 ω3 
0 0.0 3.14159 6.28319 9.42394  4.73004 7.8532 11.0856 
 0.05 3.12251 6.13706 8.96310  4.69433 7.64178 10.4625 
 0.10 3.06853 5.78167 8.03924  4.59446 7.14024 9.43622 
 0.15 2.98797 5.35999 7.16144  4.44836 6.56567 8.19880 
 0.20 2.89083 4.95805 6.45140  4.27661 6.03520 7.28636 
 .        1 0.0 3.14962 6.28419 9.42424  4.73240 7.85372 11.0858 
 0.05 3.13069 6.13814 8.96345  4.69674 7.64234 10.4628 
 0.10 3.07715 5.78296 8.03972  4.59703 7.14093 9.43652 
 0.15 2.9973 5.36162 7.16212  4.45120 6.56655 8.19926 
 0.20 2.90113 4.96010 6.45233  4.27981 6.03634 7.28701 
 .        10 0.0 3.21929 6.29324 9.42693  4.75349 7.85836 11.0875 
 0.05 3.20157 6.14785 8.96657  4.71831 7.64738 10.4647 
 0.10 3.15162 5.79456 8.04405  4.62002 7.14710 9.43919 
 0.15 3.07757 5.37615 7.16824  4.47650 6.57448 8.20334 
 0.20 2.98918 4.97844 6.46069  4.30822 6.04654 7.29281 
 .        102 0.0 3.74836 6.38163 9.45367  4.95039 7.90432 11.10390 
 0.05 3.73718 6.24247 8.99792  4.91930 7.69720 10.48430 
 0.10 3.70612 5.90689 8.08693  4.83300 7.20795 9.46583 
 0.15 3.66136 5.51545 7.22856  4.70863 6.65227 8.24379 
 0.20 3.61001 5.15155 6.54255  4.56560 6.14585 7.44536 
 .        103 0.0 5.75562 7.11211 9.70941  6.22391 8.32511 11.26470 
 0.05 5.75254 7.01275 9.29177  6.20836 8.14919 10.67430 
 0.10 5.74411 6.78346 8.48240  6.16611 7.74558 9.72064 
 0.15 5.73227 6.53640 7.76220  6.10767 7.31184 8.62865 
 0.20 5.71912 6.32879 7.22988  6.04408 6.94519 7.86100 
 .        104 0.0 10.02430 10.36873 11.56476  10.12290 10.83920 12.58720 
 0.05 10.02368 10.33719  11.32578  10.11930 10.76120 12.17640 
 0.10 10.02209 10.26836 10.91178  10.10960 10.59460 11.57140 
 0.15 10.01987 10.20025 10.60116  10.09649 10.43532 10.98161 
 0.20 10.01741 10.14776 10.40748  10.08260 10.31634 10.64047 

 
4. Concluding remarks 
 
The vibration of an Euler-Bernoulli nanobeam resting on an elastic foundation is investigated for 
simply supported and clamped-clamped boundary conditions.  Results for natural frequencies are 
obtained with Differential Transform Method. The effects of the nondimensional nonlocal parameter 
( ), nondimensional Winkler foundation parameter (k), and boundary conditions (Simply supported 
and clamped-clamped) are tabulated. The numerical results show that the natural frequency of the 
nanobeam decreases with increasing the nondimensional nonlocal parameters and increasing with 
increasing nondimensional Winkler foundation parameters. 
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