

Akdeniz Üniversitesi, Mühendislik Fakültesi, Elektrik-Elektronik Mühendisliği, TR-07058, Konyaaltı/Antalya

EEM 303 Electronic II Laboratory 6

Frequency Response of Amplifiers						
	Student Name	Student ID	Group Number			
1.						
2.						
3.						
4.						

Objective:

To understand the frequency response of amplifiers

Equipment will be available at the laboratory:

DC power supply, Oscilloscope, Electronic Training Set(Y-0016), Patch wires,

Equipment will be ensured by students:

Digital Multi-Meter, Calculator

Preliminary Work:

Read the laboratory sheets. There might be a test or classical exams in the beginning of each laboratory hour. Questions will be asked mostly from *Supplementary Information* and *Procedure* sections.

The frequency response of JFET amplifiers should be briefly summarized and documented into A4 paper and given to instructor(s) at beginning of laboratory hour.

Procedure:

- 1. Turn on the oscilloscope and calibrate it,
- 2. Make sure the amplitude and frequency potentiometer of Function Generator adjusted to minimum, then, turn on the Training Set and connect the 'OUTPUT' to first channel of the oscilloscope,
- 3. Adjust the frequency to 1kHz and peak to peak voltage $(V_{i_{nn}})$ to 100 mV
- 4. Power off the Training Set and Oscilloscope,
- 5. Insert the Y-0016-0011 module into training set.
- 6. Connect the patch wires to the module as it is shown in Figure 1.
- 7. Turn the power on for Y-0016 Training Set.

- 8. Measure the input signal's peak to peak voltage $(V_{i_{pp}})$ and its frequency f_i .
- 9. Measure the output signal's peak to peak voltage $(V_{o_{pp}})$ and its frequency f_o .
- 10. Record measured values in the Table 1.
- 11. Repeat the procedure 8 to 10 for the frequency values stated in the Table 1,
- 12. Calculate the output gain A_V for all frequency values.
- 13. Calculate each voltage gain in decibel $(A_{V_{dB}})$ via equation below,

$$A_{V_{dB}} = 20 \log_{10} A_V$$

Bandwidth Measurement

- 14. Obtain lower cutoff frequency corner f_{Lc} and higher cutoff frequency corner f_{Hc} by adjusting frequency to a certain level that make 3dB decrement from the maximum gain.
- 15. Calculate the bandwidth with respect to the frequency response.

Figure 1: Connection scheme of JFET frequency response circuit.

Results:

f _i	0.01 Hz	0.1 Hz	1 Hz	10 Hz	100 Hz	1 kHz	10 kHz	100 kHz	1 MHz	10 MHz
f _o										
V _{ipp}										
V _{opp}										
A_V										
$A_{V_{dB}}$										

Table 1: Frequency response measurements.

Bandwidth Measurement

$f_{Lc} =$	$f_{Hc} =$	$BW = f_{Hc} - f_{Lc} =$
------------	------------	--------------------------

Conclusion: