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Abstract 

This research deals with dynamic response of a Polymer/BaTiO3 nanowire including viscosity influences. The 

wire is also impressed by a longitudinal electric field. Hamilton’s principle, Lagrangian strains and a refined 

higher-order beam theory are combined together in order to derive equations of motion. By combining 

nonlocality and small size effects of a unique model into the derived equations, the couple relations which 

describe nanosize behavior in a small scale are presented. By employing an analytical approach, the 

fundamental natural frequencies are calculated numerically. The important results display that the effect of 

internal viscosity and nonlocality whenever the nanowire is very large are pointless. 

Keywords: Dynamics response; Piezo-nanowires; Viscosity; Nonlocal theory of strain gradient; Analytical 

approach 

1. Introduction and Literature review 

In continuation of discovering of carbon nanotubes by Ijimia in 1991, a wide attention has 

been paid to the other one-dimensional nanomaterials for example; nanobelts, nanorods and 

nanowires [1]. Quasi aforementioned one-dimensional materials are a new group which in 

recent years have been presented in many scientific research. It was proved that these 

materials with a non-carbonic base show the amazing optic, thermal and mechanical 

characteristics and are utilized as main structural group in nanoscience and nanotechnology 

for equipment such as biological and chemical sensors, field effect transistors and logic 

circuits [2]. 

Paying attention to the new shape of nanostructures, namely nanowires, has been doubled 

after year 2000. The structures with thickness or diameter of a few tens of nanometers and 

even smaller and also non-limited length can be defined as nanowires. The nanowires' cross 

section might be cylindrical, hexagonal, polygons or etc. with regard to their crystallography 

[3]. The nanowires' length can be variable from a few tens of nanometers to micron or even 

millimeter. These nanostructures regarding their special properties can be used in the new 
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electronic parts. Because developments and progressives in the electronic industries are due to 

the decreasing of their parts [4].  

One of the most attractive nanostructures can be nanowires made of metals due to their unique 

properties, which lead to their various applications. Nanowires can be used on computers and 

other calculating devices. Nanoscale wires are required to achieve complex nanoscale 

electronics. In addition, the nanowires itself can be the basis of electronic components, such 

as memory [4]. Proper understanding of the properties, applications, and methods of making 

nanowires is very important because it will enable researchers to construct nanowires with 

controlled properties and dimensions and can easily adapt them to fit the structural elements 

in minimizing electrical and electronic equipment [3]. 

Theoretical investigations on the prediction of mechanical response of nanowires are rare and 

there have been a few studies about nanowires. Kiani [5] analyzed dynamically a nanowire 

exposed to a longitudinal magnetic shock. He assumed wires on an elastic foundation and 

used nonlocal continuum theory to study quantum effects. He also solved the obtained 

equations of motion by a semi-analytical approach. In another study, Kiani [6] examined a 

double current-carrying nanowire exposed to a longitudinal magnetic field based on a new 

integro-surface energy method. Pishkenari et al. [7] studied transverse natural frequencies of a 

silicon nanowire using atomistic simulation method. To model the nanoscale, they proposed a 

new continuum model at which surface stress and surface elasticity were considered by both 

Timoshenko and Euler-Bernoulli beam models. Their outcomes estimated the results for 

Timoshenko approach including surface effects are matched with MD results. Fu and Zhang 

[8] reported stability critical conditions and free torsional natural frequencies of an established 

continuum core-shell nanowire which included weak interfaces based on the surface 

elasticity. Dynamic buckling and free vibrations of a nanowire with an initial deformation 

considering surface effects were investigated by Kiani [9]. The nanowire was placed in an 

axial magnetic surround and frequencies of vibration were computed analytically. Gongbai et 

al. [10] investigated harmonic and transient response of an atomic nanowire made of silicon. 

Zhoua et al. [11] formulated nonlinear resonance of a ZnO piezo-nanowire derived by an 

electric field. Their results agreed with the experimental outcomes. Zhang et al. [12] 

combined the Euler-Bernoulli approach and a high-order surface stress in order to study 

transverse vibrations of a nanowire placed in a polymer foundation exposed to an axial 

compressive force. The pivot boundary condition was satisfied analytically based on a closed-

form solution. Li et al. [13] demonstrated three different elastic substrates for analysis free 

natural and excitation frequencies of a nanowire. The governing equations were derived 

regarding a surface elasticity and solved respecting to various boundary conditions. Su et al. 

[14] addressed small scale effects for considering mechanically transverse response of several 

nanostructures with one-dimension like nanoropes and nanowires. They presented the strain 

gradient model to examine small size influences and obtained constitutive equations on the 

basis of classical beam theory. Finally they computed free vibrations and buckling of the 

models under several edge conditions and validated the numerical results with the 

experimental tests. Samaei et al. [15] presented free vibration of a piezo-nanowire under an 

electric field for which surface effects addressed size influences. The simply-supported 

rectangular wire was modeled analytically on the basis of both Timoshenko and Euler-

Bernoulli beam approaches. Their outcomes showed that the shear deformations imposed a 

remarkable impact on the dynamics characteristics of the nanowire. Gheshlaghi and 

Hasheminejad [16] analyzed dynamically a piezo-nanowire included both nonlocal and 

surface elasticity effects based on the classic beam theory. An explicit solution technique was 

devoted to compute natural frequencies of the wire. Kiani also published some other research 

works related to the nanowires [17-19]. Mercan et al. [20] modeled stability of a Silicon 
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Carbide nanowire on the basis of a higher-order elasticity theory. Mercan and Civalek [21] 

analyzed dynamically a micro/nanowire based on the finite element model. On the other hand, 

Numanoglu et al. [22] examined natural frequencies of an Au nanowire based on the 

continuum elasticity approach. In terms of nanostructures analyses, there are a wide range of 

valuable published research in several conditions [23-65].  

Heretofore by review the literature, it is clear that the nanowires have been examined rarely 

which the most important ones are above mentioned. However within the published research 

there is no one in which a nanowire has viscoelastic influences. There is no doubt that 

considering a viscoelastic piezo-nanowire can lead to attractive results. Additionally, the 

Polymer/BaTiO3 nanowire has been rarely investigated. Therefore, in this paper it is tried to 

show a new schema for analysis of nanowires. To this, a modified beam model is employed 

from which one equation is obtained only whenever the classical mechanics is taken into 

consideration. To be the small scale influences taken into account, nonlocal strain gradient 

theory is applied. This model examines both size-dependent and nonlocality characteristics. In 

order to simply transfer the partial differential equation into the algebraic one the Navier 

method is utilized. This method fully satisfies pivot boundary condition. Afterwards, the 

outcomes for variety of cases would be depicted numerically. 

2. Theoretical Modelling 

A BaTiO3 nanowire is lied in a polymer matrix and displayed by Figure below. Cartesian 

coordinate is connected to the center of the wire (x) and along the upper quadrant of its 

diameter (z).  
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Fig. 1. A Polymer/BaTiO3 nanowire in a Cartesian coordinate system 

Regarding the refined shear deformation beam theory [48], the given displacement field is 

described as  
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The dynamic equilibrium of the model is derived with the calculus of variations on the basis 

of the Hamilton’s principle leading to formulating governing equations [48] 
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  
0

0

t

S T dt          (2) 

 

where Π depicts total potential energy of the wire, T and Ω denote the kinetic energy and the 

work done by outer loads. S also symbolizes the strain energy of the wire. 

2.1. The strain potential energy 

The strain energy would be shown in a variational form as [48]  

 

   0ij ij i i
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S D E dV       (3) 

 

In which the aforementioned parameters are respectively the electric field ( iE ), electric 

displacement ( iD ), strain tensor ( ij ), and stress tensor ( ij ), and can be summarized as 

follows [49] 
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 i ikl kl ik kD =e E   (5) 

 

where the displayed constants are piezoelectric ( ijke ), dielectric ( ik ), and elasticity quantities 

( ijklC ). The tensors in Eqs. (4-5) lead to [49]: 
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A potential function for the longitudinal electric field can be chosen as [49].  
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In which  (x,t) denotes the electric field and the outer electric voltage is shown by 
0V . 

Afterwards, the piezoelectric components take the form [49]: 
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The electric displacements can be expressed as [49]: 
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The coefficients in Eq. (12) are developed as 
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2.2. The external force 

The Winkler model as an external force makes a thermodynamic work calculated as [48-49] 
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where kw demonstrates the value of springiness in the foundation. 

2.3. The kinetic energy 

The kinetic energy is written as [48] 
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Applying the variational form of the kinetic energy, one gets 
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where Im  m cI I shows the mass moment of inertia, m0  0
A

m dA   is the volumetric mass 

density, and ρ exhibits the sectional density. 

Finally, doing δΠ=0 gives problem equations as 
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In which Nx, Mx and Qx symbolize respectively the in-plane, moment and shear stress 

resultants. 

The stress resultants are written as 
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Therefore Eq. (18) is rewritten as 
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where the coefficients are 
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A reveals the nanowire' cross section. Furthermore, cI  
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 represents the area moment 

of the cross section.  

In this research, axial stress resultant addresses the longitudinal electric load ( E
ijN ) created by 

the electric field as [49]: 
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The equation below is applied to address the nonlocal strain gradient theory (NSGT) [66]. 

Efficiency and accuracy of NSGT as a size-dependent model was approved in many papers and 

this nanoscale approach is now a well-known one. Therefore, in this research the NSGT is used 

corresponding to 
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In which μ depicts nonlocality and also l symbloizes a length scale factor for NSGT. 

With regard to the Eq. (23) and applying it on the Eq. (19) the small scale stress resultants can 

be given by  
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The linear model of viscoelasticity, namely Kelvin-Voigt is here utilized to consider coupling 

of Viscous-Elasticity in the nanowire as [67] 
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In which the viscoelastic factor is represented by g. Now the equations below are achieved 

which include a combination of Eq. (17) with Eqs. (12), (22), (24) and (25). The obtained 

relations should be utilized in order to compute the vibration frequencies of the piezo-

nanowire with viscoelasticity properties. 
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3. Solution Technique 

In this section Navier solution method is used which reduces the partial differential equation 

(PDE) to an algebraic one as [48] 
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In which  y x  is a fundamental mode shape,  W t and  t are temporary functions based 

on time. The mode shape which determines pivot boundary conditions is as 

 

   sin
x

y x
L

 
  

 
  (28) 

 

Substituting Eq. (27) into Eq. (26), Eq. (26) reduces to an algebraic equation where to 

compute pivot boundary supports, Eq. (28) is employed. Thereafter, in order to present 

vibration frequencies a harmonic function is assumed as below 
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In which ωn corresponds to the complex frequency of the nanowire. The natural frequency is 

divided into two parts, real and imaginary as 

 

 , 1n i  i=      (30) 

 

In which   is the real part and   is the imaginary part of the complex frequency, 

respectively. The real part shows damping ratio for the model and the imaginary part 

represents natural frequency. Consequently, based on the given algorithm and some 

mathematical simplifying, the equation below can be obtained. 

 

  
 

 
  0n

W t x
K sin exp t

t L

    
      
    

   (31) 
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To compute the natural frequency of the piezo-visco-nanowire, a nontrivial solution can be 

done by vanishing determinant of the coefficients matrix (   0det K  ). After that, by 

calculating the obtained equation based on n the numeric outcomes for the natural frequency 

can be shown (Appendix A). 

 

4. Examples and Discussions   

At this point, several samples are considered with which a crystal comparison between the 

current formulation and others is presented. Table 1 considers several references with various 

beam approaches. As it is found, the numerical outcomes of the present work are matched 

with those obtained by references. In addition, very good agreements are observed whenever 

the beam tends to be thinner with increasing its ratio of length to thickness. The reason is 

because at this condition the influence of shear deformations cannot be important and the 

results of the mentioned beam theories are close to one another. By this Table, the current 

formulation can be approved and so, the numerical outcomes can be further developed by 

changes in the essential variables. On the other hand, the mechanical and electrical quantities 

and properties of the employed nanowire can be seen at Table 2 which are found by the well-

known references. 

 

Table 1. Validations for nondimensional vibration frequencies. 

2

n n

A
L

EI


  , E=1TPa, υ= 0.3, h=1nm 

L/h (e0a)2 Present 

Timoshenko beam 

theory (TBT) 

Sinusoidal beam 

theory (SBT) 

[68] [69] [68] [69] 

5 

0 9.2943 9.2740 9.2740 9.2752 9.2752 

1 8.8587 8.8477 8.8477 8.8488 8.8488 

2 8.4788 8.4752 8.4752 8.4763 8.4763 

3 8.1495 8.1461 8.1461 8.1472 8.1472 

4 7.8693 7.8526 7.8526 7.8536 7.8536 

10 

0 9.7209 9.7075 9.7075 9.7077 9.7077 

1 9.2666 9.2612 9.2612 9.2614 9.2614 

2 8.8857 8.8713 8.8713 8.8715 8.8715 

3 8.5483 8.5269 8.5269 8.5271 8.5271 

4 8.2320 8.2196 8.2196 8.2198 8.2198 

20 

0 9.8377 9.8281 9.8281 9.8282 9.8282 

1 9.3840 9.3763 9.3763 9.3764 9.3764 

2 8.9917 8.9816 8.9816 8.9816 8.9816 

3 8.6456 8.6328 8.6328 8.6329 8.6329 

4 8.3329 8.3218 8.3218 8.3218 8.3218 
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Table 2. The mechanical, electrical and geometrical characteristics of the piezo-nanowire [49] 

 

 

 

 

 

 

 

According to Figs. 2, the changes in the parameter of the electric voltage can be seen versus 

small scale parameters' changes. It is evident from both figures the influences of changes in 

the outer voltage on frequency results of the system is insignificant. As a matter of fact, the 

nanowire used in the present study does not have a significant reaction to external electricity, 

although the influence is sufficiently large at such nanoscale. Perhaps it’s because of its very 

low nanoscale thickness or its one dimensional manner. Furthermore, it is observed that 

increasing the nonlocal parameter in NSGT relation results in reduction of the natural 

frequency and regarding the second figure, the length scale parameter of the relation leads to 

increasing of the natural frequency. It can also be worth noting that in the case of both 

parameters which have the same values (e.g. value 1), the natural frequency of the nanowire 

in both figures will be in same values that are quite logical. In fact, this mode represents a 

local analysis, not taking the influences of small scale into account. 

 

 
Fig. 2a. Effects of variations of the electric voltage versus nonlocal parameter on the natural 

frequencies (β=5, l=1nm, g=5N.s/m) 

Material Mechanical and electrical Properties 

BaTiO3 

Dielectric (C/V.m) 

κ11=5.64e-9, κ 33=6.35e-9 

Piezoelectric (C/m2) 

e31=-2.2,  e15=5.8, e33=9.3 

Elastic (GPa) 

C11=226, C13=124,  

C33=216, C44= 44.2 

β=L/d (Aspect ratio), d=5 nm, ρ=5550 kg/m3,  kw=1.13GPa 
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Fig. 2b. Effects of variations of the electric voltage versus length scale parameter on the natural 

frequencies (β=5, e0a=1nm, g=5N.s/m) 

Figure 3 exhibits the variation of the coefficient of internal viscosity of the nanowire against 

the nonlocal coefficient’s variation. It is quite clear from the figure that the natural frequency 

is increased with increasing the viscoelastic coefficient. In fact, from a physical point of view, 

by increasing the coefficient, the nanowire’s energy absorption is higher, and so the nanowire 

will have a larger frequency. Moreover, the frequency variations are linear and with a slight 

gradient. It can be concluded that for nanowires with very large lengths, the effect of viscosity 

is not remarkable. In Fig. 4, the effect of changes in the Winkler elastic foundation on the 

frequency results of the nanowire can be observed. In fact, after embedding the elastic base, 

the system provides greater frequencies. Such an increase is shown with a fairly significant 

gradient in the aforementioned figure. It can also be seen that changes in the viscosity of the 

nanowire do not affect the variation of the elastic base. The reason is as a result of the 

parallelism of results of the three viscosity coefficients in Fig. 4. 

 

 
Fig. 3. Effects of variations of the viscoelastic coefficient versus nonlocal parameter on the natural 

frequencies (V0=5V, β=5, l=1nm) 
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Fig. 4. Effects of variations of the Winkler parameter versus viscoelastic coefficient on the natural 

frequencies (V0=5V, β=5, e0a=1nm, l=2nm) 
 

Figure 5 shows an important effect on nanowires. In fact, the physical nature of the nanowires 

is wires of very long lengths. For example, nanowires with a length to thickness ratio of 1,000 

are also available. According to this figure, it can be seen that in large proportions of this 

coefficient, the small scale effect is completely unimportant. However, in small ratios of this 

factor, the effect of small scale will be larger. Additionally, increasing the aspect ratio to 7 

will lead to a sharp decrease of vibration results for the nanostructure, and then the slope of 

the results will be mitigated. To the extent that it can be said, in very large quantities, the 

effect of the coefficient’s changes does not affect the frequency results of the modeled system 

in the present study. 

 

 

Fig. 5. Effects of variations of the aspect ratio versus nonlocal parameter on the natural frequencies 

(V0=10V, g=5N.s/m, l=1nm) 
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5. Conclusions 

In the study, a nanowire was embedded in an elastic substrate, and the electric field was 

assumed to be longitudinal. To analyze the effects of size-dependent, the nonlocal strain 

gradient theory was employed which has two variables. One parameter, known as nonlocal 

parameter, measures effects of quantum mechanics on the surface, and the second factor, 

known as the length scale one, measures the stiffness effects of the material by decreasing its 

size. The marked outcomes are listed below: 

 Although the BaTiO3 nanowire does not react remarkably to the external voltage, the 

influence is sufficiently large and cannot be neglected at nanoscale.  

 Whilst the nanowire is very large, the effects of small scale and viscoelasticity cannot be 

considerable. 

 The effect of increase of the external voltage on the nonlocal parameter is more than the 

length scale one.  

 Increase of the viscoelastic parameter is further remarkable for lower values of the 

nonlocal parameter. 
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