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Abstract 
This paper presents size dependent formulations based on nonlocal elasticity theory and third 

order shear deformation theory. The formulations are then applied to the bending analysis of 

functionally graded rectangular nanoplates with simply supported boundary condition. 

Similar to functionally graded macro plates, it is assumed that the material properties of 

nanoplates are varied across the thickness direction by a power rule of the volume fraction of 

the constituents. Numerical results illustrate the influence of the power-law exponent and the 

nonlocality on the deflections of simply supported rectangular nanoplates.  
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1. Introduction 

 

In the past decade, carbon nanostructures have drawn substantial interest from the researches 

community for the future application of modern aerospace, micro electromechanical systems 

and nano electro-mechanical systems [1]. Graphene sheets as structural elements occupy an 

important position in carbon nanostructures. Usually graphene sheets as a nano-plate are 

subjected to the transverse loads at small scales. Thus the mechanical strength is influenced 

by small ‘size-effect’ [2]. Experimental results show that as length scales of a material are 

reduced, the influences of long-range interatomic and intermolecular cohesive forces on the 

mechanical properties become prominent and cannot be neglected [3]. Therefore, continuum 
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models need to be extended to consider the scale effect in nanomaterial studies. Various size-

dependent continuum theories which capture small scale parameter are reported [4]. One of 

these continuum theories is the nonlocal theory of Eringen which has the capability to predict 

behavior of the large nano-sized structures, while it avoids solving the large number of 

equations [5]. In this theory, the inter-atomic forces and atomic length scales directly come to 

the constitutive equations as material parameters [6].  

A review of literature shows that there are only a few papers on the bending analysis of rectangular 

graphene sheets in comparison with the dynamic analysis of them. Aghababaei and Reddy [5] 

reformulated the third order shear deformation theory on the basis of nonlocal elasticity theory to 

study the bending and free vibration of isotropic rectangular nanoplates. Nami and Janghorban [7] 

proposed a new higher order shear deformation theory based on trigonometric shear deformation 

theory. In order to consider the size effects, the nonlocal elasticity theory was used. Nami and 

Janghorban [8] also presented the bending analysis of rectangular nanoplates subjected to mechanical 

loading. For this purpose, the strain gradient elasticity theory with one gradient parameter was used to 

study the nanoplates. Recently, Giunta et al [9] studied several higher-order atomistic-refined 

models for the static and free vibration analysis of nanoplates. Stemming from a two-

dimensional approach, a general model derivation was used where the approximation order 

was a free parameter of the formulation. 

The necessity of monitoring the local variations of the material properties in the whole 

component to meet the design requirements has led to creation of various functionally graded 

materials [10]. Recently, functionally graded micro/nano structures have attracted a great 

attention due to their unique material properties. Hosseini-Hashemi [11] studied the free 

vibration of FG nanobeams by considering surface effects. It was shown that making changes 

to voltage values and modifying mechanical properties of nanobeams are two main 

approaches to achieve desired natural frequencies. Jang et al [12] developed a model for 

sigmoid FG nanoplates on elastic medium based on a modified couple stress theory. Buckling 

response of rectangular S-FGM nanoplates was derived, and the obtained results were 

compared well with reference solutions. Nami and Janghorban [13] developed an analytical 

solution to study the free vibration analysis of functionally graded rectangular nanoplates. The 

governing equations of motion were derived based on second order shear deformation theory 

using nonlocal elasticity theory. Nami and Janghorban [14] also investigated the resonance 

behaviors of functionally graded micro/nano plates using Kirchhoff plate theory. To consider 

the small scale effects, the nonlocal elasticity theory and strain gradient theory with one 

gradient parameter were adopted.  
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In this study, for the first time, the influence of characteristic length parameter on the bending 

analysis of functionally graded rectangular nanoplate is investigated on the basis of the 

nonlocal theory of Eringen [15,16] and third order shear deformation theory presented by 

Reddy [17]. The results of the present methodology are compared with numerical results in 

the literature. This model is then used to study the effects of various design parameters such 

as the power law exponent and nonlocal parameter on the deflections of nanoplate.  

 

2. Governing equations 

 

Several modifications of the classical elasticity formulation have been proposed to address the 

small-scale effect. As mentioned above, one of the well-known models is the nonlocal 

continuum theory [18]. In the local elasticity theories, stress tensor at a point is assumed to be 

dependent on strain tensor at that point. But in the nonlocal theory, it is assumed that the 

stress tensor at a point depends on strain tensor at all the points of the continuum [19]. The 

nonlocal constitutive relation is expressed as,  

 

 
(1) 

where 

 ,  ,  

 
and  is the nonlocal parameter. A graphene sheet which is described as a nano-sized 

rectangular plate is defined in Cartesian coordinate (x,y,z). The displacement field in terms of 

midplane displacements and rotations is defined as [20,17],  
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where  .The linear strains are given by 

 

 

 

 

 
 

(3) 
The governing equations of the displacement model in equation (2) are derived using 

Hamilton's principle as follow [20,17], 

 

  

 

 
(4)  

Where 

 

 ,    

 
 (5)  

By obtaining transverse displacement and rotation functions with considering equation (5), 

the force and moment resultants of the FG nanoplate can be computed by using the nonlocal 

constitutive relations in the following forms 
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(7)  
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The governing equations in terms of midplane displacements and rotations for bending 

analysis of FG nanoplates are obtained with considering the nonlocal force and moment 

resultants (equations (6-15)) and the equations of motion (Equation (4)) as follow, 

 

  



Maziar Janghorban 

 92

(16) 

 
 (17) 

 
 (18) 

 

Obviously, only one length scale parameter is involved in the above governing equations. By 

setting this parameter equal to zero, one can have the governing equations based on third 

order shear deformation theory for FG macro plates. The transverse and in-plane 

displacements and in-plane rotations equations are considered as [20,17], 
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As the last step, by inserting above approximation in equations (16-18), one can easily study 

the bending analysis of FG nanoplates with simply supported edge condition.  

 

3. Numerical results 
 

The study, here, has been focused on the free vibration behavior of functionally graded 

rectangular nanoplates based on the nonlocal third order shear deformation theory. In this 

analysis, the material properties are assumed to vary with the power law distribution along the 

thickness directions, that is [14],  

 
,  

(20) 

where P can be defined as Young modulus and p and h are the power law exponent and 

thickness of nanoplate.  It is assumed that the top surface of nanoplate is subjected to 

mechanical loading and the bottom surface is traction free. In order to justify the validity of 

the suggested model, consider a convectional isotropic nanoplate subjected to a uniformly 

distributed loading. In figure 1, the results given by the present model are compared with the 

known data for nonlocal classical plate theory for different values of nonlocal parameter. 

From the data given in this figure the accuracy of our method is demonstrated. Moreover, it is 

evident that for nonlocal CPT and nonlocal TSDT, increasing the nonlocal parameter, the 

deflections increase linearly.  

Figure 2 depicts the influences of power law exponent and nonlocality on the deflections of 

simply supported functionally graded nanoplates.  It can be seen that with the increase of 

power law exponent the deflections of nanoplate under uniform loading will increase. From 

this figure it is also found that increasing the nonlocal parameter will cause the deflections to 

increase because of the reduction in the rigidity of the functionally graded nanoplate. A 

similar trend may be observed for the isotropic simply supported rectangular nanoplates in the 

work of Nami and Janghorban [7]. It is worth to note that the power law index has more effect 

for higher nonlocal parameters. From this figure one can also understand that in some cases, 

increasing the power law exponent has no significant effect on the results. Similar conclusion 

was reported for nonlocal parameters more than 4 in the open literature.  

Figure 3 shows the influences of the variations of aspect ratio and nonlocal parameter on the 

deflections of functionally graded nanoplate. It is obtained that with the increase of aspect 

ratio the deflection increases. It is also concluded that the aspect ratios have more effect on 
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the results in comparison with nonlocal parameter although the small scale effects cannot be 

ignored.  

Now we examine the effects of the power law exponent and nonlocality on the deflections of 

functionally graded single-layered graphene sheet subjected to sinusoidal loading. Figure 4 

shows the variation of deflections versus power law exponent for different nonlocal 

parameter. It is shown that the trend of the results is similar to the graphene sheets under 

uniformly distributed loading. Moreover, for each nonlocal parameter, it can be seen that 

increasing the power law indexes, the deflection approaches to a limit value although 

increasing the nonlocal parameter will cause a delay to reach this limit value. 

In figure 5, the effects of length to thickness ratio and power law index for different nonlocal 

parameter on the transverse deflections of FG nanoplate is figured. It is shown that with the 

increase of length to thickness ratio the deflections of FG nanoplate will increase. From this 

figure it is concluded that the influences of length to thickness ratio can be important 

especially for thick nanoplates. It is noted that although present methodology is complex in 

comparison with nonlocal classical plate theory but it has the ability to study both thin and 

thick nanoplates.  

The methodology proposed in present article may provide useful guidance for design of 

nanodevices that make use of the bending properties of functionally graded nanoplates in the 

near future. 
 

4. Conclusion    
    
An analytical solution was obtained for the bending analysis of simply supported functionally 

graded rectangular nanoplate. The formulation was based on third order shear deformation 

theory and included the nonlocality effects. The material properties of functionally graded 

rectangular nanoplates were assumed to be varied through the thickness direction on the basis 

of power law distribution. According to the best of the author’s knowledge, the problem 

described in this article has not been addressed yet so our results can be used as a reference 

for future works. From above numerical results, it was obtained that,  

 It seems that the nonlocal effects for the bending of nanoscale FG plate are more 

noticeable in higher power law exponent. 
 It is shown that increasing the power law indexes, the deflection approaches to a limit 

value.  



Maziar Janghorban 

 95

 With the increase of length to thickness ratio the deflections of FG nanoplate will 

increase. 
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Fig 1. Comparing present results for thin nanoplates with nonlocal CPT  
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Fig 2.The effects of nonlocal parameter and power index on the deflections  
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Fig 3.The effects of aspect ratio and nonlocal parameter on the deflections 
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Fig 4. The effects of nonlocal parameter and power index on the deflections under sinusoidal 

loading 
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Fig 5.The effects of length to thickness ratio and nonlocality on the deflections 
 
 
 


