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Abstract 

In this paper, static analysis of a nano rectangular plate subjected to uniform distributed load is studied based on 
modified couple stress theory (MSCT) by using Generalized Differential Quadrature (GDQ) Method. The inclusion of an 
additional material parameter enables the new plate model to capture the size effect. The new non-classical plate model 
reduces to the classical plate model when the length scale parameter is set to zero. In deriving of the governing 
equations, the minimum total potential energy principle is used. In the solution of the governing equations, the DQM 
method is used for simply-supported nano plate within the Kirchhoff-Love plate theory. In the numerical results, the 
influences the material length scale parameter and the dimension parameters of the plate on the static deflection of the 
nano plate is presented. Also, the difference between the classical theory (CT) and MSCT is investigated for static 
responses of nano plate. 

Keywords: Nano Plate, Modified couple stress theory, Generalized Differential Quadrature Method, Static Analysis.  

1. Introduction 

With the great advances in technology in recent years, micro and nano structures have found many 
applications. In these structures, nano/micro plates are widely used in micro- and nano 
electromechanical systems (MEMS and NEMS) such as sensors (Zook et al. [1], Pei et al. [2]), 
actuators (Senturia [3], Rezazadeh et al. [4]). In investigation of micro and nano structures, the 
classical continuum mechanics which is scale independent theories, are not capable of explanation of 
the size-dependent behaviors. Nonclassical continuum theories such as higher order gradient theories 
and the couple stress theory are capable of explanation of the size dependent behaviors which occur 
in micro-scale structures. 

At the present time, the experimental investigations of the micro materials are still a challenge 
because of difficulties confronted in the micro scale. Therefore, mechanical theories and atomistic 
simulations have been used for micro structural analysis. The process of the atomistic simulations is 
very difficult and takes much time. So, continuum theory is the most preferred method for the 
analysis of the micro and nano structures. Classical continuum mechanics does not contain the size 
effect, because of its scale-free character. The nonlocal continuum theory initiated by Eringen [5] 
which has been widely used to mechanical behavior of nano-micro structures. 

The size effect plays an important role on the mechanical behavior of microstructures at the 
micrometer scale that the classic theory has failed to consider when the size reduces from macro to 
nano (Toupin [6], Mindlin [7], Mindlin [8], Fleck and Hutchinson [9], Yang et al [10], Lam et al. 
[11]). Therefore, higher-order theories modified couple stress theory (MCST) and modified strain 
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gradient are used in the mechanical model of the nano-micro structures (Yang et al [10], Lam et al. 
[11]).  

The determination of the micro-structural material length scale parameters is very difficult 
experimentally. So, Yang et al. [10] proposed the modified couple stress theory in which the strain 
energy has been shown to be a quadratic function of the strain tensor and the symmetric part of the 
curvature tensor, and only one length scale parameter is included. After this, the MCST and the strain 
gradient elasticity theories have been widely applied to static, buckling and dynamic analysis of 
nano/micro plates [12-41]. In these studies, Ansari et al. [37] studied three-dimensional bending and 
vibration analysis of functionally graded nanoplates, Ghadir et al. [38] investigated thermo-
mechanical vibration of orthotropic cantilever nanoplate, Kananipour [39] investigated static analysis 
of nonlocal nanoplates based Kirchhoff and Mindlin plate theories, Arani and Jafari [40] examined 
nonlinear vibration analysis of laminated composite Mindlin micro/nano-plates resting on orthotropic 
Pasternak medium and Pradhan and Kumar [41] investigated vibration analysis of orthotropic 
graphene sheets using nonlocal elasticity theory differential quadrature method. 

In this study, the static bending responses of a simple supported rectangular nano plate subjected to 
uniform distributed load based on the MCST theory within the Kirchhoff-Love plate theory by using 
Generalized Differential Quadrature (GDQ) Method. The effect of the material length scale 
parameter and the dimension parameters of the nano plate on the static responses of the nano plate 
are investigated in both the CT and MCST.  

2. Formulations 

Consider a simple supported rectangular nano plate with thickness t in X3 direction, the length of Lx1 
and Lx2 the in X1 and X2 direction, respectively. The nano plate is subjected to uniformly distributed 
transverse load (q). The modified couple stress theory was proposed by Yang et al. (2002). Based on 
this theory, the strain energy density for a linear elastic material which is a function of both strain 
tensor and curvature tensor is introduced for the modified couple stress theory;  

                                       ܷ = ∫ :࣌) ࢿ + :࢓ ௏(࣑ ܸ݀                                                                  (1)    

where σ is the stress tensor, ε is the strain tensor, m is the deviatoric part of the couple stress 
tensor, χ is the symmetric curvature tensor, defined by       

࣌                                       = ܫ(ࢿ)ݎݐ ߣ +  (2)                                                                     ࢿߤ2

ࢿ                                       = ଵ
ଶ

࢛∇] +  (3)                                                     [்(࢛∇)

࢓                                       = 2݈ଶ(4)                                                              ࣑ ߤ 

࣑                                       = ଵ
ଶ

ࣂ∇] +  (5)                                                                           [்(ࣂ∇)

where λ and μ are Lame’s constants, l is a material length scale parameter which is regarded 
as a material property characterizing the effect of couple stress, u is the displacement vector 
and θ is the rotation vector, given by                      

ࣂ                                       = ଵ
ଶ

curl (6)                                                                                        ࢛ 
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The parameters λ and μ in the constitutive equation are given by 

ߣ                                     = ா  ఔ
(ଵାఔ)(ଵିଶఔ)

ߤ  ,  = ா
ଶ(ଵାఔ)

                                                                 (7) 

where E is the modulus of elasticity and ν is the Poisson ratio. 

According to the Kirchhoff-Love plate theory, the axial and the displacement fields are 
expressed as   

)ݑ                                    ଵܺ, ܺଶ, ܺଷ) = )଴ݑ ଵܺ, ܺଶ) − ܺଷ
డ௪(௑భ,௑మ)

డ௑భ
                                          (8) 

)ݒ                                   ଵܺ, ܺଶ, ܺଷ) = )଴ݒ ଵܺ, ܺଶ) − ܺଷ
డ௪(௑భ,௑మ)

డ௑మ
                                      (9)    

)ݓ                                   ଵܺ, ܺଶ, ܺଷ) = )଴ݓ ଵܺ, ܺଶ)                                        (10) 

where u, v, w are X1, X2 and X3 components of the displacements, respectively. 

By using equations (3), (8), (9) and (10) and strain- displacement relation can be obtained: 

 
1ܺߝ                               = డ௨

డܺ1
= డ௨బ(ܺ1,ܺ2)

డܺ1
− ܺ3

߲2௪(ܺ1,ܺ2)
߲ܺ1

2                                                       (11a)               

2ܺߝ                               = డ௩
డܺ2

= డ௩బ(ܺ1 ,ܺ2)
డܺ2

− ܺ3
߲2௪(ܺ1,ܺ2)

߲ܺ2
2                                                       (11b)     

௑భ௑మߝ                               = ଵ
ଶ

ቀడ௨బ(௑భ,௑మ)
డ௑మ

+ డ௩బ(௑భ,௑మ)
డ௑భ

− 2ܺଷ
డమ௪(௑భ,௑మ)

డ௑భడ௑మ
ቁ                               (11c)     

By using equations (6), (8), (9) and (10), 

௑భߠ                                  = డ௪(௑భ,௑మ)
డ௑మ

                                       (12a) 

௑మߠ                                 = డ௪(௑భ,௑మ)
డ௑భ

                       (12b) 

௑యߠ                                 = − ଵ
ଶ

ቀడ௨బ(௑భ,௑మ)
డ௑మ

− డ௩బ(௑భ,௑మ)
డ௑భ

ቁ                   (12c) 

Substituting equation (12) into equation (5), the curvature tensor χ can be obtained as follows 

                                 ߯௑భ௑భ = డమ௪(௑భ,௑మ)
డ௑భడ௑మ

                    (13a) 

                                 ߯௑మ௑మ = − డమ௪(௑భ,௑మ)
డ௑భడ௑మ

                                (13b) 

                                ߯௑భ௑మ = − ଵ
ଶ

ቀడమ௪(௑భ,௑మ)
డ௑భ

మ − డమ௪(௑భ,௑మ)
డ௑మ

మ ቁ                                        (13c) 

                                ߯௑భ௑య = − ଵ
ସ

ቀడమ௨బ(௑భ,௑మ)
డ௑భడ௑మ

− డమ௩బ(௑భ,௑మ)
డ௑భ

మ ቁ                            (13d) 
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                                ߯௑మ௑య = − ଵ
ସ

ቀడమ௨బ(௑భ,௑మ)
డ௑మ

మ − డమ௩బ(௑భ,௑మ)
డ௑భడ௑మ

ቁ                            (13d) 

The constitutive equations of the nano plate are as follows: 

୧୨ߪ                                 = ா
(ଵିఔమ)

௜௝ߜ௞௟ߝߥൣ + (1 −  ௜௝൧                   (14a)ߝ(ߥ

                                  ݉୧୨ =  ଶ߯୧୨                    (14b)݈ߤ2

According to the minimum total potential energy principle, the first variation of the total 
potential energy must be zero. That is 

 

 

In deriving of the governing equations, the Hamilton’s principle is used; 

)ߜ                                           ௜ܷ + ௘ܷ)=0                                                                               (15) 

where Ui and Ue are the strain energy and the potential energy of the external load, 
respectively. The first variation of Ui and Ue are expressed as   
 

ߜ ௜ܷ = ∫ ൫ߪ௜௝ ௜௝ߝߜ  + ݉௜௝ ௜௝൯ܸ݀௏߯ߜ  = ∫ ∫ ቂ ଵܰ
பఋ௨బ(௑భ,௑మ)

డ௑భ
− ଵܯ

பమஔ௪(௑భ,௑మ)
ப௑భ

మ +௅೉మ
଴

௅೉భ
଴

ଵଶܯ2
డమ௪(௑భ,௑మ)

డ௑భడ௑మ
+ ଵܰଶ ቀడ௨బ(௑భ,௑మ)

డ௑మ
+ డ௩బ(௑భ,௑మ)

డ௑భ
ቁ + ଶܰ

பఋ௩బ(௑భ,௑మ)
డ௑మ

−

ଶܯ
பమஔ௪(௑భ,௑మ)

ப௑మ
మ + ாభయ

ଶ
ቀ− డమ௨బ(௑భ,௑మ)

డ௑భడ௑మ
+ డమ௩బ(௑భ,௑మ)

డ௑భ
మ ቁ + ଵܧ

డమ௪(௑భ,௑మ)
డ௑భడ௑మ

+ ாమయ
ଶ

ቀ− డమ௨బ(௑భ,௑మ)
డ௑మ

మ +
డమ௩బ(௑భ,௑మ)

డ௑భడ௑మ
ቁ + ଵଶܧ ቀ− డమ௪(௑భ,௑మ)

డ௑భ
మ + డమ௪(௑భ,௑మ)

డ௑మ
మ ቁ ଶܧ+ ቀ− డమ௪(௑భ,௑మ)

డ௑భడ௑మ
ቁቃ ݀ ଵܺ݀ܺଶ                       (16a) 

ߜ                           ௘ܷ = − ∫ )ݍ] ଵܺ, ܺଶ) ݓߜ( ଵܺ, ܺଶ)] ݀A஺                                                     (16b) 

where N1, N2, N12, M1, M2, M12, E1, E2, E12, E13 and E23 are stress resultants, and  expressed as 
follows: 

where 

                      ( ଵܰ, ଶܰ, ଵܰଶ) = ∫ ൫ߪ௑భ௑భ , ௑మ௑మߪ , ௑భ௑మ൯݀ܺଷߪ
଴.ହ௛

ି଴.ହ௛                                             (17a) 

,ଵܯ)                      ,ଶܯ (ଵଶܯ = ∫ ൫ߪ௑భ௑భ , ௑మ௑మߪ , ௑భ௑మߪ ൯ܺଷ݀ܺଷ
଴.ହ௛

ି଴.ହ௛                                         (17b) 

,ଵܧ)                      ,ଶܧ ,ଵଶܧ ,ଵଷܧ (ଶଷܧ = ∫ ൫݉௑భ௑భ , ݉௑మ௑మ , ݉௑భ௑మ , ݉௑భ௑య , ݉௑మ௑య൯݀ܺଷ
଴.ହ௛

ି଴.ହ௛       (17c) 

Substituting eqs. (16) into eq. (15), and then using integrating by parts, the governing 
equations of the problem can be obtained as follows; 

               ா௧య

ଵଶ(ଵିఔమ)
ቀ଺௟మ(ଵିఔ)

௧మ ቁ ቀడర௪(௑భ,௑మ)
డ௑భ

ర + 2 డర௪(௑భ,௑మ)
డ௑భ

మడ௑మ
మ + డర௪(௑భ,௑మ)

డ௑మ
ర ቁ = )ݍ ଵܺ, ܺଶ)                 (18) 
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The boundary conditions at the simple supported nano plate ends are as follows; 

)ݓ                         ଵܺ, 0) = ,௑ଵܮ)ݓ 0) = ,0)ݓ ܺଶ) = ,0)ݓ (௑ଶܮ = 0                                   (19a) 

)ଵଶܧ              ଵܺ, 0) − )ଶܯ ଵܺ, 0) = 0              (19b) 

,௑ଵܮ)ଵܯ ܺଶ) + ,௑ଵܮ)ଵଶܧ ܺଶ) = 0                     (19c) 

)ଵଶܧ ଵܺ, (௑ଶܮ − )ଶܯ ଵܺ, (௑ଶܮ = 0               (19d) 

,ଵ(0ܯ ܺଶ) + ,ଵଶ(0ܧ ܺଶ) = 0               (19e) 

In the solution of the governing equations, the Generalized Differential Quadrature Method is 
used. In the differential quadrature method, the derivatives of a function are written as linear 
summation of the values at all points in the domain [42-45]; 

ௗ(೛)௪(௫ೕ)
ௗ௫(೛) ≈ ∑ ௝௜ܤ

(௣)௡
௜ୀଵ  (20)                                                                (௜ݔ)ݓ

where n is the number of the points in the domain, p is the order of derivative in the function, 
௝௜ܤ

(௣) is the weighting coefficient with pth derivative of the function with respect to x. The 
weight coefficients for first-order derivative (p=1) are as follows [42,43]; 

௝௜ܤ                                   
(ଵ) = ቐ

∏ ൫௫ೕି௫೔൯೙
ೕసభ

൫௫ି௫ೕ൯ ∏ ൫௫೔ି௫ೕ൯೙
ೕసభ

− ∑ ௝௜ܤ
(ଵ)௡

௝ୀଵ,௜ஷ௝       ݅ = ݆       
݅ ≠ ݆                                         (21) 

   For the higher order derivatives, the weight coefficient is expressed as follows: 

௝௜ܤ                                           
(௣) = ∑ ௝௥ܤ

(ଵ)ܤ௥௜
(௣ିଵ)௡

௥ୀଵ      (i,j=1,n)                                            (22) 

 

For determined the sampling points in the domain, Chebyshev–Gauss–Lobatto grid points is 
employed[42,43]; 

௝ݔ                                           = ଵ
ଶ

ቂ1 − ݏ݋ܿ ቀ௝ିଵ
௡ିଵ

 ቁቃ      (j=1,nx1)                                         (23a)ߨ

௜ݔ                                           = ଵ
ଶ

ቂ1 − ݏ݋ܿ ቀ ௜ିଵ
௡ିଵ

 ቁቃ      (i=1,nx2)                                        (23b)ߨ

where nx1 and nx2 are the number of the grid points in X1 and X2 direction, respectively. 

Substituting eqs. (20-23) into eq. (18), and then using GDQ discretization, the governing 
equations of the problem can be obtained as follows; 
 

  ா௧య

ଵଶ(ଵିఔమ)
ቀ଺௟మ(ଵିఔ)

௧మ ቁ ቀ∑ ௝௞ܤ
(ସ)௡ೣభ

௞ୀଵ ௞௝ݓ + 2 ∑ ∑ ௝௞ܤ
(ଶ)௡ೣమ

௠ୀଵ
௡ೣభ
௞ୀଵ ௜௠ܤ

(ଶ)ݓ௞௠ + ∑ ௜௞ܤ
(ସ)௡ೣమ

௞ୀଵ ௞௜ቁݓ =                        ݍ

                                                                          (j=1,nx1), (i=1,nx2), (k=1,p+1)                       (24) 

The dimensionless displacement can be expressed as 
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ഥݓ                                                      = ݓ  ா ௧య

௤ ௔ర                                        (25)     

 

                                                                                             

3. Numerical Results 

In this section, various numerical examples are presented and discussed to investigate the static 
deflections of the nano plate. In order to determine the effects of the material length scale parameter 
and the dimension parameters on the static bending of the nano plate, result are obtained in 
conjunctions with the MCST and the CT. The nano plate considered is made of epoxy (E=1.44 GPa, 
ν=0.38, l=17.6 µm). Unless otherwise stated, it is assumed that the length of Lx1=500 µm, the length 
of Lx2=500 µm for distributed load q=1 μN/μm2. In the numerical calculations, the numbers of the 
grid points are taken as nx1=nx2=18.  

In figure 1, the effect of the thickness of the nano plate on the maximum the vertical displacements 
of the nano plate is presented for various values of the distributed load q for CT and MCST. 

 
Figure 1: Effect the thickness on the maximum the vertical displacements of the nano plate for CBT 

and MCST; a) t=10 µm, a) t=50 µm and a) t=100 µm. 

It is seen from figure 1, with the increase in the thickness of the nano plate, the difference between 
the results of the MCST and CT decrease considerably. It shows that an increase in the thickness of 
the nano plate leads to a decline on effects of size effect and difference between the results of MCST 
and CBT.  

In figure 2, the effect of the dimensionless material length scale parameter (l/t) on the maximum the 
vertical displacements of the nano plate are presented for CT and MCST. In this figure, for different 
values of the dimensionless material length scale parameters (l/t), the material length scale 
parameters (l) is varied when the thickness of the nano plate (t) is keep constant as 10 μm. Therefore, 
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the thickness of the material length scale parameters increases as the dimensionless material length 
scale parameter (l/t) increases. 

 

 

 
Figure 2: Effect the dimensionless material length scale parameter on the maximum the vertical 

displacements of the nano plate for CBT and MCST. 

As seen from figure 2 that the dimensionless material length scale parameter has no effect on the 
displacements for the classical theory, which is unable to capture the size effect. However, the 
displacements of the non classical plate model decreases as the material length scale parameter 
increases. The static deflections estimated by the CT are always larger than those of the MCST. It is 
observed from figures that the difference between the two models is significant when the ratio of l/t 
increases. It shows that the material parameter has a very important role on the static responses of the 
nano plates.  

4. Conclusions 

In this paper, the static deflections of rectangular nano plate examined based on MCST by using 
GDQ method. In numerical study, the effect of the material length scale parameter and the dimension 
parameters of the nano plate on the static responses of the nano plate is presented in both the CT and 
MCST. Numerical results show that the geometry properties and the dimensionless material length 
scale parameter have a very important role on the static behavior of the nano plate. MCST displays 
important size-dependence in higher values of the l/t ratios. Also, it is found the numerical results 
that the displacements of the nano plate by the CT are always larger than those by the MCST. 
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