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Abstract 

This paper presents stability analysis of a non-homogeneous plate with porosity effect. Material properties of the plate 

vary in the thickness direction and depend on the porosity. In the solution of the problem, the Generalized Differential 

Quadrature method is used. In the porosity model, uniform porosity distribution is considered. The effects of the porosity 

and material distribution parameters on the critical buckling of the non-homogeneous plate are investigated. 
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1. Introduction 

Non-homogeneous structures, namely functionally graded structures are a type of composites where 

the volume fraction of the materials constituents vary gradually, giving a non-uniform microstructure 

with continuously graded macro properties such as elasticity modulus, density, heat conductivity, etc.. 

Typically, in non-homogeneous structures, one face of a structural component is ceramic that can resist 

severe thermal corrosion effects and the other face is metal which has excellent structural strength.  

Non-homogeneous structures have been an area of intensive research over the last decade. Because of 

the wide material variations and applications, it is important to study the static and dynamic analysis 

of Non-homogeneous structures, such as plates. Therefore, an intensive study has been conducted 

recently on vibration of structures made of FGMs (i.e., [1–42]). 

In the literature, some studies about the porosity effect in the Non-homogeneous structures are; 

Wattanasakulpong and Ungbhakorn [43] investigated vibration analysis of porous  FG beams. Mechab 

et al. [44,45] examined free vibration analysis of a FG nano-plate resting on elastic foundations with 

the porosities effect. Şimşek and Aydın [46] examined forced vibration of FG microplates with 

porosity effects based on the modified couple stress theory. Jahwari and Naguib [47] investigated FG 

viscoelastic porous plates with a higher order plate theory and statistical based model of cellular 

distribution. Vibration characteristics of FG beams with porosity effect and various thermal loadings 

are investigated by [48-49]. Linear/ nonlinear analysis of buckling and vibration of FG beams 
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reinforced porous nanocomposite are investigated by Chen et al. [50] and Kitipornchai et al. [51]. 

Akbaş [52] investigated static and vibration of FG porous plates by using Navier solution. 

Stability analysis of a simply supported non-homogeneous plate is investigated with porosity effect by 

using Generalized Differential Quadrature Method based on the classical plate theory. The effects of 

the porosity and material distribution parameters on the critical buckling loads of the non-

homogeneous plate are examined.  

2. Formulations 

A simply supported rectangular non-homogeneous porous plate with thickness h in X3 direction, the 

lengths of LX and LY the in X1 and X2 directions, respectively as shown in Figure 1. The non-

homogeneous plate is subjected to biaxial plane compressive loads N  in both  X1 and X2 directions, 

respectively.  

 

 
Fig. 1. A non-homogeneous plate subjected biaxial compressive loads with porosity. 

 

The effective material properties of the non-homogeneous plate, P, such as, Young’s modulus E, 

Poisson’s ratio ν, and shear modulus G vary continuously in the thickness direction (X3 axis) according 

to a power-law function. In the porosity model, the porosity spread uniformly though height direction. 

According to the power law distribution, the effective material property with porosity can be expressed 

as follows: 

 

                                      (1) 

 

where a (a<<1) is the volume fraction of porosities. When a=0, the plate becomes perfect non-

homogeneous plate. 

 

According to classical plate theory, the strain- displacement relations are expressed as  
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                                 𝜀𝑋2
=
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                                            𝛾𝑋1𝑋2
=

1

2
(𝜀𝑋1𝑋2

0 −
∂2v

𝜕𝑋1𝜕𝑋2
)                                                             (2c)   

where u, v, w are X1, X2 and X3 components of the displacements respectively. The constitutive 

equations of the non-homogeneous plate are as follows:  

 

                            𝜎ij(𝑋3,𝑎) =
𝐸(𝑋3,𝑎)

(1−𝜈2)
[𝜈𝜀𝑘𝑙𝛿𝑖𝑗 + (1 − 𝜈)𝜀𝑖𝑗]                                                               (3) 

 

The stress resultants of the non-homogeneous plate are given as follows; 

 

                𝑁𝑖𝑗 = ∫ 𝜎ij
0.5ℎ

−0.5ℎ
𝑑𝑋3   𝑖 = 𝑗,  𝑀𝑖𝑗 = ∫ 𝜎ij

0.5ℎ

−0.5ℎ
𝑋3 𝑑𝑋3,  𝑄𝑖𝑗 = ∫ 𝜎ij

0.5ℎ
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𝑑𝑋3   𝑖 ≠ 𝑗              (4) 

 

where 𝑁𝑖𝑗, 𝑀𝑖𝑗 and 𝑄𝑖𝑗 are normal force, moment and shear forces, respectively. The stability equation 

of the non-homogeneous plate is given as follows: 

 

                                   𝛻4𝜈 −
𝐴1(1−𝜈2)

𝐴1𝐴3−𝐴2
2  (𝑁1

0 ∂2v

∂𝑋1
2 + 𝑁2

0 ∂2v

∂𝑋2
2) = 0                                                (5) 

 

where 𝑁1
0 and  𝑁2

0 are the pre-buckling force resultants, 𝐴1, 𝐴2, 𝐴3 are  expressed as follows: 

 

                                 (𝐴1, 𝐴2, 𝐴3) = ∫ 𝐸(𝑋3, 𝑎)(1, 𝑋3, 𝑋3
2)

0.5ℎ

−0.5ℎ
𝑑𝑋3                                             (6) 

The boundary conditions at the simple supported plate ends are as follows; 

                        𝑣(𝑋1, 0) = 𝑣(𝐿𝑋 , 0) = 𝑤(0, 𝑋2) = 𝑤(0, 𝐿𝑌) = 0                                          (7a) 

          𝑀(𝑋1, 0) = 𝑀(𝐿𝑋 , 𝑋2) = 𝑀(𝑋1, 𝐿𝑌) = 𝑀(0, 𝑋2) = 0              (7b) 

In the solution of the governing equations, the Generalized Differential Quadrature Method is 

used. In the differential quadrature method, the derivatives of a function are written as linear 

summation of the values at all points in the domain [53-56]; 

𝑑(𝑝)𝑤(𝑥𝑗)

𝑑𝑥(𝑝) ≈ ∑ 𝐵𝑗𝑖
(𝑝)𝑛

𝑖=1 𝑤(𝑥𝑖)                                                                (8) 

where n is the number of the points in the domain, p is the order of derivative in the function, 

𝐵𝑗𝑖
(𝑝)

 is the weighting coefficient with pth derivative of the function with respect to x. The weight 

coefficients for first-order derivative (p=1) are as follows [53,54]; 

                                   𝐵𝑗𝑖
(1)
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   For the higher order derivatives, the weight coefficient is expressed as follows: 

                                           𝐵𝑗𝑖
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= ∑ 𝐵𝑗𝑟
(1)
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For determined the sampling points in the domain, Chebyshev–Gauss–Lobatto grid points is 

employed[53,54]; 

                                          𝑥𝑗 =
1

2
[1 − 𝑐𝑜𝑠 (

𝑗−1

𝑛−1
𝜋)]      (j=1,nx1)                                         (11a) 

                                          𝑥𝑖 =
1

2
[1 − 𝑐𝑜𝑠 (

𝑖−1

𝑛−1
𝜋)]      (i=1,nx2)                                         (11b) 

where nx1 and nx2 are the number of the grid points in X1 and X2 direction, respectively. 

Substituting eqs. (8-11) into eq. (5), and then using Generalized Differential Quadrature 

discretization, the governing equations of the problem can be obtained as follows; 
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𝑣𝑘𝑚 + ∑ 𝐵𝑖𝑘

(4)𝑛𝑥2
𝑘=1 𝑣𝑘𝑖) −

𝐴1(1−𝜈2)

𝐴1𝐴3−𝐴2
2  (𝑁1

0 ∑ 𝐵𝑗𝑘
(2)𝑛𝑥1

𝑘=1 𝑣𝑘𝑗 + 𝑁2
0 ∑ 𝐵𝑖𝑘

(2)𝑛𝑥2
𝑘=1 𝑣𝑘𝑖) = 0  (j=1,nx1), (i=1,nx2), (k=1,p+1)      (12) 

 

The dimensionless critical buckling load can be expressed as follows; 

                                                     �̅�cr = 𝑁𝑐𝑟
 𝐿𝑋

2

𝐸𝐵 ℎ3                                       (13)  

3. Numerical Results 

In the numerical results, the dimensionless critical buckling loads �̅�cr are presented in figures for 

different porosity parameters and material distributions. The rectangular non-homogeneous porous 

plate considered in numerical examples is made of Zirconia (E=151GPa, ν=0.3) and Steel (E=210GPa, 

ν=0.3). The top surface material of the non-homogeneous plate is Zirconia, the bottom surface material 

of the non-homogeneous plate is Steel. When k=0 and k=∞, the material of the plate gets homogeneous 

Zirconia and homogeneous  Steel, respectively, according to Eq. (1). The dimensions of the non-

homogeneous plate are considered as follows: h = 0.2 m, LX =3 m, LY=3 m in the numerical examples. 

In the numerical calculations, the numbers of the grid points are taken as nx1=nx2=20.  

In figure 2, the effect of the material distribution parameter k on the dimensionless critical buckling 

loads of the porous non-homogeneous plate is presented for a=0. As seen from figure 2, the 

dimensionless critical buckling loads increase with increase in the power-law exponents k. With 

increase in the k, the plate gets to fully Steel. The Young's modulus of Steel is bigger than Zirconia’s. 

As it is expected, with increase the k, the Young's modulus and bending rigidity of the plate increase 

according to equation (1). So, the strength of material increases and the critical buckling loads increases 

naturally.  
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Fig. 2. The effect of the material distribution parameter k on the dimensionless critical buckling loads �̅�cr. 

 

Figure 3 displays the relationship between of porosity parameter a and the dimensionless critical 

buckling loads of the non-homogeneous porous plate for different the material distribution parameters. 

It is seen from figure 3 that the dimensionless critical buckling loads decrease with increase with 

increase porosity parameter a. This is because, with increase in the porosity, the strength of the material 

decreases. So, the critical buckling loads decreases naturally. It shows  that Porosity parameters play 

an important role on the stability of the non-homogeneous porous plates. 

 

 
Fig. 3. The effect of the porosity parameter a on the dimensionless critical buckling loads �̅�cr for different the 

material distribution parameters. 
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4. Conclusions 

 

In this paper, stability analysis of a simply supported porous non-homogeneous plate is studied by 

using Generalized Differential Quadrature Method. Material properties of the plate depend on both 

position and porosity. The Classical plate theory is used in the kinematic model of the plate. The effects 

of the porosity and material distribution parameters on the critical buckling loads of the non-

homogeneous plate are presented in figures. Numerical results show that the porosity has important 

role on the stability of the non-homogeneous plate. 
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