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Abstract  

In the present study, free vibration of Rayleigh beam composed of functionally graded materials (FGMs) is investigated. For 

this purpose, the equation of the motion of functionally graded (FG) beam derived according to Rayleigh beam theory. The 

material properties are assumed to vary continuously through the thickness of the beam according to the power-law form. 

Resulting equations are solved for simply supported boundary conditions. In order to validate the results, a comparison is 

carried out with available results for homogeneous beam. The effects of varying material properties on the dimensionless free 

vibration frequency parameters are examined. It is seen that varying material properties have significant effects on 

dimensionless free vibration frequency parameters of FG Rayleigh beam 

Keywords: Beam, Free Vibration, Rayleigh beam theory, Functionally Graded Materials (FGMs). 

1. Introduction 

FGMs are extensively used in machinery, space, nuclear and civil engineering; high temperature exposed 

building components, space vehicles, microelectronics, and industrial applications. These types of 

materials were first introduced by Japanese scientists in 1984 as thermal barrier materials. FGM is 

typically a mixture of a ceramic and a metal so that the metal can withstand high temperatures in the 

thermal environment as well as reduce the tensile stresses that would otherwise occur on the ceramic 

surface during the first stages of cooling [1-4]. 

Beam structures have large applications in engineering field and studying the vibration behavior of this 

kind of structural components are important for understanding the behavior of more complex and real 

structures subjected similar conditions. Therefore, researchers have been focused on the vibration analysis 

of beam structures using different theories and several solution methods [5-13].  

Due to the advantages and increasing use of FGMs and importance of the beam structures in the 

engineering field, many studies have been performed on the vibration problems of FG beams [14-22].  
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From the search of open literature, it is seen although there are numerous studies on the vibration analysis 

of FG beams using different beam theories, the number of works depending on Rayleigh beam theory is 

still limited. An attempt is made to address this problem. For this purpose, the equation of the motion of 

FG beam derived using Rayleigh beam theory. The functionally graded material properties are assumed 

to vary continuously through the thickness direction of the beam according to power law form. Resulting 

equations are solved for simply supported boundary conditions. In order to validate the results, a 

comparison is carried out with available results for homogeneous beam. The effects of varying material 

properties on the dimensionless free vibration frequency parameters are examined.  

2. Effective material properties of FGMs 

Consider a FGM beam consist of ceramic–metal, which has length, L, width b, and thickness, h, as shown 

in Fig. 1.  

 

 

Fig. 1. Geometry of a functionally graded beam  

 

The effective material properties of the FG beam, i.e., Young’s modulus E  and mass density  , vary 

continuously through the thickness direction according to a function of the volume fractions of the 

constituents while Poisson’s ratio   is taken to be constant.   

According to the rule of mixture, the effective material properties, P , can be expressed as 

 

 ccmm VPVPP    (1) 

 

where mP , cP , mV  and cV  are the material properties and the volume fractions of the metal and the 

ceramic constituents respectively. 

The total volume fraction of the metal and ceramic as follows  
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 1VV cm    (2) 

 

The power law of volume fraction of the ceramic constituent of the beam as follows 
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where d is a non-negative number (  d 0 ) called power law or volume fraction index, and z is the 

distance from the mid-plane of the beam. Note that, FG beam becomes a fully ceramic one as 0 d  while 

it becomes a fully metallic one as  d .  

The variation of the volume fraction of the ceramic constituent, cV , through the thickness direction of the 

FG beam versus various values of power law index, d, is illustrated in Fig. 2. It is clear that the cV  changes 

rapidly near the bottom surface for 1 < d  while it changes rapidly near the top surface for 1 d  . 

 

 

Fig. 2. Variation of volume fraction of the ceramic constituent along thickness of FG beam versus 

various values of power law index 
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3. Governing Equation 

 

Using Kirchoff-Love hypothesis, displacements at any point of a FG beam can be expressed as  
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  (4) 

 

where )t,x(u 0  and )t,x(w 0  are the displacements at mid-surface in the x, and z directions, respectively, 

and   is the rotation of the cross section at the mid-plane.  

 

The normal strain and shear strain are 
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Rayleigh beam theory neglects the shear strain, 0xz  , hence we have 

 

   
2

0

2

0

x

w
z

x

u
)t,z,x(









   (7) 

 

According to the Hooke’s law, the normal stress is defined as 

 

 























2

0

2

0

x

w
z

x

u
)z(E)z(E)t,z,x(   (8) 

 

The stress resultants in terms of axial force, Nx, bending moment, Mx, and transverse shear force Qx, can 

be written as 
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where 11 B,A  and 1D  are the material stiffness components of FG beam and defined as follow 
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Taking into account the axial and rotary inertias, using Hamilton’s Principle and after some mathematical 

operations, the governing equation of FG Rayleigh beam is derived as follows 

 

 0
tx

w

t

w
I

x

w
22

0

4

112

0

2

04

0

4

11 













   (13) 

 

where the following definitions apply 
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here 10 I,I  and 2I  are the moment of inertia components of FG beam and defined as follow 
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4. Solution of Governing Equation 

FG Rayleigh beam is assumed to have simply supported boundary conditions in both ends. Hence, the 

following boundary conditions are satisfied:  
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Governing Eq.(13) can be rearranged as follows:  
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where the following parameters applied  
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The solution of Eq. (18) satisfying the boundary conditions (17) is assumed as [23]: 
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Substituting the Eq.(20) into Eq. (18) yields  
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Finally, the formula for free vibration frequency of FG Rayleigh beam is obtained as follows 
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5. Numerical Results 

In this section examples are given to examine the present problem. At first, a comparison has been 

performed to show the accuracy of the present formulation. Then, an example is exhibited to show the 

effect of power law index on the dimensionless free vibration frequency parameters of FG Rayleigh beam.  

 

5.1. Comparison Study  

To confirm the formulation given in Eq. (22), the values of natural frequencies of homogeneous beam, 

)sn/rad( , are compared with results of Rao [23] in Table 1. Here the following beam characteristics 

and material properties are taken into account:  
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Table 1. Comparison of the values of natural frequencies of homogeneous beam with results of Rao [23] 

 

Source 
)sn/rad(  

n=1 n=2 n=3 

Present Study 696.5834 2713.3651 5857.9512 

Rao [23] 696.5987 2713.4221 5858.0654 

 

As it is seen in Table 1, the results are in good agreement and so the accuracy of the formulation 

is validated.  
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5.2. Illustrative example  

 

Fig. 3 shows the variation of dimensionless free vibration frequency parameters of FG Rayleigh beam, 

 , for the first three modes versus power law index, d. Here, FG Rayleigh beam is assumed to be 

composed of Alumina (Al2O3), and Aluminum (Al). Hence, the following beam characteristics and 

material properties are considered:  

 

 
3

mm

3

cc

m/kg2702;GPa70E

m/kg3960;GPa380E

5h/L







   (24) 
 

The dimensionless free vibration frequency parameter of Rayleigh beam is defined as follow: 
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It is obvious from Fig. 3 that, the highest dimensionless free vibration frequency parameters are found for 

Al2O3 while the lowest ones are found for Al. Furthermore, dimensionless free vibration frequency 

parameters decrease with increasing power law index, d. As a result, it is concluded that the dimensionless 

free vibration frequency parameters decrease as the material property of FG Rayleigh beam varies from 

ceramic to metal component.  
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Fig. 3. Variation of dimensionless frequency parameters of FG Rayleigh beam versus power law 

index, d. 

 

6. Conclusions 

In the present study the free vibration of the beam composed of FGMs is investigated using Rayleigh 

beam theory. The material properties are assumed to vary continuously through the thickness direction of 

the beam according to the power-law form. Resulting equations are solved considering simply supported 

boundary conditions. In order to validate the results, a comparison is carried out with available results for 

homogeneous beam. It is seen that varying material properties have significant effects on dimensionless 

free vibration frequency parameters of FG Rayleigh beam. Present analysis can be served as a comparative 

study or data for the different solution methods of future works.  
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