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Abstract 

Functionally graded materials (FGM) are increasingly used in the engineering field. In many applications, FGMs 

are modelled as plates. Plates made of functionally graded materials (FGPs) are mostly designed to perform under 

elevated temperatures. In those circumstances, they are often under the combined effect of thermal and mechanical 

loads. There have been many studies on buckling analysis of FGP under either mechanical or thermal loads; 

however, only a few studies have addressed the combined effect of both loads acting together. This article focuses 

on the review of research on buckling analysis of FGP under the combined thermal and mechanical loads. 

Keywords: Functionally graded material; plate; FGP models; thermo-mechanical buckling; solution methods. 

1. Introduction 

Functionally graded materials (FGMs) are advanced inhomogeneous composite materials in 

which graded interlayer separates different materials of the composite structure. FGM’s concept 

is to replace the sudden change in composition that occurs at the interface between different 

materials, with a compositionally graded phase, aiming at reducing stress concentrations 

through the structure. This microstructure variation in FGM occurs with a specific function 

through one or more dimensions of the volume. The concept of gradual variation in material is 

found in nature. Many organic structures have gradual variation through one or more 

dimensions. For example, human bones and bamboo trees. More examples are available in [1]. 

FGM’s concept was first explored theoretically early in the seventies of the previous century 

by Shen and Bever [2, 3]. More than ten years later, in Japan, 1984, FGM concept was first 

implemented in engineering application. That first implementation was in design of thermal-

resistant structure. Since then there have been intensive research and various implementations 

of FGM concept in various engineering applications. Recently, FGM has been introduced to 

gear structures [4, 5], turning tools [6], drilling wicks [7] and many other applications including 

tubes, rotating disks and sport instruments [8]. In addition, FGMs have found applications as 
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electrical field grading insulators [9]. Other important applications of FGMs are in the medical 

field. FGMs have been intensively investigated as biomaterials [10, 11], especially in dentistry 

as dental implants and crowns [12, 13], bone plates [14], bone implants [15] and knee joints 

[16]. 

In literature, there are various methods of modeling, analysis, fabrication and characterizing of 

FGM parts available. Relatively thin structures with a wide flat planar surface are normally 

called plates. When the concept of FGM is implemented to a plate then it is called functionally 

graded plate (FGP). FGPs are generally designed to withstand high thermal loads and it often 

experiences some additional mechanical loads. Therefore, FGPs often have to be designed to 

withstand the combined effect of the thermal and mechanical loads. FGPs provide designers 

with the ability to tailor material response so desired performance can be achieved. FGPs found 

wide range of applications especially space vehicles where it was first implemented [1]. Other 

fields also have started to adopt and benefit from this relatively new concept. As an example, 

Cooley [17] designed an exhaust wash structure as FGP to be used in aircrafts those have 

internally exhausted engines. There have been many studies on analysis of FGP under either 

mechanical or thermal loads; however, only a few studies have addressed the combined effect 

of both loads acting together. One main analysis usually conducted in plate design is buckling 

analysis. When a flat plate experiences compressive in-plane loads, resulting from compression 

loads at its edges or thermal loads with constrained edges, buckling and post-buckling analysis 

have to be conducted to ensure correct prediction of the plate’s behavior. Review articles those 

cover FGP buckling under combined thermal and mechanical loads are rare. Swaminathan [18] 

reviewed thermo-mechanical buckling analysis of FGPs briefly in a subsection of a wide review 

that also contains stress and vibration analysis. Later on, same author, Swaminathan [19] 

reviewed modeling and solution methods used in thermal buckling of FGPs, but did not separate 

buckling under combined thermal and mechanical loads from thermal buckling studies. It is 

obvious that the combined loading is the general case. Therefore, focusing on it and showing 

which FGPs’ models, shapes, configurations and solution methods are used is a step towards 

filling gaps in this study field.  

In this review article, FGP buckling under combined thermal and mechanical loads studies are 

reviewed aiming at providing a closer look at this specific analysis and pointing at existing gaps 

in its literature. This review starts with brief on FGP definition as a plate and as functionally 

graded material and about their geometries and configurations, those appear in literature. Then, 

in the third section, the implemented models are listed with brief description. Followed by the 

fourth section briefing methods to characterize FGP properties. In the fifth section, buckling, 

thermal buckling and thermo-mechanical buckling are briefly discussed. Solution methods are 

reviewed in the sixth section. Suggestions and comments are included in the last section.  

2. FGP definition, shapes and configuration 

FGP is a plate that has the concept of FGM implemented to its composition. Reddy [20] defined 

plate as: “A plate is a structural element with planform dimensions that are large compared to 

its thickness and is subjected to loads that cause bending deformation in addition to stretching”. 

A rectangular plate is shown in Fig. 1 with typical coordinate system and names of characteristic 

dimensions. Normally, the length of the longer inplane edge of the plate is referred to as (a), 

where the shorter is referred to as (b), while the out-of-plane depth, a.k.a. thickness, is referred 

to as (h). 
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Fig. 1. Rectangular plate structure 

In literature, various shapes and configurations are considered in thermo-mechanical buckling 

analysis of FGPs. Different shapes and configurations come from the many aspects those define 

a FGP as a plate and those define FGP as FGM. 

2.1. FGP’s plate characteristics 

The first aspect that defines FGP as a plate is its thickness to side ratio. Plates may be classified 

according to the ratio of a its typical inplane dimension to its thickness [21] into thick, 

moderately thick and thin plates. All the three classes have been found in literature of thermo-

mechanical buckling analysis of FGPs. Few examples for studies that considered thin plates are 

[22] and [23]; moderately thick plates [24] and [25]; and thick plates [26] and [27]. Another 

aspect is the thickness variation; in the literature under focus, only FGPs with constant thickness 

were found. Next aspect for defining a plate is the scale of its dimensions. According to this 

aspect, FGP can be classified into nano-plates, micro- plates and “normal” plates. Nano-FGP 

and micro-FGPs have been studied for thermo-mechanical buckling by many researchers, for 

example [28]. Nano-FGP and micro-FGP are out of the scope of this review article.  

Next aspect is the shape of the FGP. The rectangular is the most studied shape of FGP for the 

thermo-mechanical buckling analysis. However, other FGP shapes have been also studied. 

Other considered shapes are the annular FGP analyzed numerically by Shariyat [29], skew FGP 

analyzed numerically by Taj [30] and Yu [31], square FGP analyzed by Kowal-Michalska [22] 

using approximate analytical method, and circular FGP studied by Kiani [32], Fallah [33] and 

Li [34]. Various special configurations have been considered in literature. Stiffened FGPs have 

been studied by Cong [25], Van [35] and Duc [27]. FGP with holes and perforated FGP have 

been considered by Lal [36] and Shariyat [29], respectively. Porous FGP have been analyzed 

by Cong [37] using approximate analytical methods. Cracked FGP have been analyzed by Fan 

[38] using approximate analytical methods. 

2.2. FGP resting on elastic foundation 

An important configuration is FGP resting on elastic foundation. The simplest model for the 

elastic foundation is the Winkler model, which regards the foundation as a series of separated 

springs without coupling effects between each other. Pasternak model adds a shear layer to the 

Winkler model as a parameter. Pasternak model is widely used to describe the mechanical 

behavior of structure–foundation interactions [39]. More complicated foundation model is 

Kerr’s model, which adds a third parameter as an additional shear layer [40].  
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In the literature of thermo-mechanical buckling analysis of FGP, the only used foundation 

model is the Pasternak model. FGP on Pasternak foundation has been analyzed using 

approximate analytical methods by Cong [25, 37], Bakora [26], Duc [27, 41], Bateni [42], 

Chikh [43], Yu [44], Fan [38] and Shen [45, 46]. Whereas Mansouri [47] and Shams [48] used 

numerical methods. It is worth mentioning that in all these studies only the rectangular plate 

was considered.  

2.3. Sandwich FGP 

Lastly, we have sandwich FGP configuration. FGP may be included in sandwich structure as 

core material or as face sheet material as shown in Fig. 2. In literature of thermo-mechanical 

buckling analysis, both structures have been considered and studied. Tung [24], Yu [44], Shen 

[45, 46, 49] and Yaghoobi [50] studied various FGP sandwich configurations. It is noticed that 

all these studies implemented approximate analytical methods. In addition, all of these studies 

considered only the rectangular FGP. 

 

 
 

 

a) FGM sheets on homogenous core 

 
 

 

b) Homogenous sheets on FGM core 

Fig. 2. Sandwich FGP structures  

2.4. FGP’s FGM characteristics 

The second part of aspects define FGP as FGM. The first aspect in this part is the dimensionality 

of FGP, which refers to the number of dimensions through which properties variation occurs. 

Composition variation happens through the thickness, or the in-plane two dimensions [51, 52] 

as shown in Fig. 3. In literature of thermo-mechanical buckling analysis of FGP, the only 

studied FGP is the 1-D that has its variation through the thickness. 

The Next aspect is the symmetry of variation of FGP. Generally, in thermal buckling analysis, 

the plate symmetry is important in determining if there will be a bifurcation point or not. Fig. 4 

shows a symmetric and non-symmetric rectangular FGPs. Lack of symmetry is considered as 

serious initial imperfection in the plate, that prevent reaching a bifurcation point except for 

specific loading configurations and boundary conditions. Examples for studies considered 

symmetric FGP: [24, 43, 49, 50, 53, 54]; and for non-symmetric FGPs: [22, 38, 42, 44]. 

Another important aspect is the continuity of the variation in FGP. FGP may be studied as single 

layer with continuous variation with a function determines its properties at every point of the 

plate, or as laminated homogenous layers with specific thickness of each, as shown in Fig. 5. 

Usage of one of these models depends on the solution methods. 
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a) Inplane one-dimensional FGP 

 
b) Inplane two-dimensional FGP 

   
c) Out-of-plane one-dimensional FGP 

Fig. 3. FGP’s property/composition variation dimensionality 

 

 

 
 

 

a) Symmetric FGP 

 
 

 

b) Non-symmetric FGP 

Fig. 4. Symmetry of FGP 

 

 
 

 

a) Stepped (laminated) FGP 

 
 

 

b) Continuous FGP 

Fig. 5. Variation continuity of FGP 
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3. FGP models 

Modelling and Analysis of FGPs’ behavior are discussed in many books of plate mechanics, 

e.g. [20, 21, 55-62]. Thermo-mechanical buckling of FGPs has been studied mostly using 

various models based on plate theories. However, other models based on theory of elasticity 

are rarely used for this analysis. Following is a brief on the models used in thermo-mechanical 

buckling of FGPs. 

3.1. Models based on elasticity theory 

Theory of elasticity is based on the concepts of equilibrium, continuum and a material 

constitutive relationship to analyze any structure [58]. While FGPs can be analyzed using 

elasticity theory providing high accuracy solutions, it requires more solving effort in both 

analytical and numerical solution methods. Using elasticity theory to analyze plates provide 

benchmark to assess accuracy and validity of other simplified methods [63]. In literature of 

thermo-mechanical buckling analysis of FGP, an elasticity theory-based model has been used 

just once in the recent study of Shariyat [29]. 

3.2.Models based on plate theories 

Plate theories are based on mechanics-of-material approach. Mechanics-of-material approach 

is based on assuming suitable hypothesis regarding the geometry of deformation, which 

simplify the problem resulting in simpler models [20]. Models based on plate theories contain 

equivalent single layer (ESL) models and laminated layer models. In literature of FGP thermo-

mechanical buckling, laminated layer model has been used just once by Kowal-Michalska [22]. 

Equivalent Single Layer theories (ESL) are based on the assumption that properties, and hence 

displacement, through the thickness of the plate can be expressed by a function. This function 

may be polynomial or non-polynomial. Because of the smallness of the plate thickness, it is 

suitable to analysis the plate as two-dimensional structure with assumed relations describe 

variation of deformation and stresses through the thickness. comprehensive view of ESL is 

presented at [64]. ESL-based models those used in thermo-mechanical buckling analysis of 

FGPs are briefly described as follows. 

3.2.1. Classical plate theory (CPT) 

This theory was developed in 1888 by Love using assumptions proposed by Kirchhoff. It is also 

called “Kirchhoff plate theory”, “Kirchhoff-Love plate theory” or “Thin plate theory”. It is an 

extension of “Euler–Bernoulli beam theory”. CPT ignores both shear and normal deformation 

effects. Assumptions of this theory are expressed as restrictions of transverse normals, i.e. 

straight lines normal to the mid-surface before deformation. CPT assumes that transverse 

normals remain straight, normal to the neutral plane and at the same length after deformation 

[20]. Displacement field of the CPT can be written as shown in Eq. (1), in which (𝑢, 𝑣, 𝑤) are 

the displacements of any point (𝑥, 𝑦, 𝑧) of the plate in X, Y and Z-directions respectively; 

(𝑢0, 𝑣0, 𝑤0) are the displacements of point (𝑥, 𝑦) at the neutral plane in X, Y and Z-directions 

respectively. CPT models are implemented in FGP thermo-mechanical buckling analysis by 

Amoushahi [65] for rectangular FGP. In addition to buckling, post-buckling has been studied 

using CPT model by Tung [66] for rectangular FGP and Li [34] for circular FGP. 
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𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧
𝜕𝑤0
𝜕𝑥

 

(1) 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤0
𝜕𝑦

 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) 

3.2.2. First order shear deformation theory (FSDT) 

Also called “Reissner-Hencky-Bollé-Mindlin plate Theory”, “Reissner-Mindlin plate Theory”, 

“Mindlin plate Theory”, “first-order theory” or “Moderately thick plate theory” [58]. It forms 

an extended version of “Timoshenko beam theory”. FSDT extends the CPT by relaxing the 

normality restriction of the transverse normals to the neutral plane. FSDT assumes that 

transverse normals remain straight and at the same length after deformation. FSDT yields a 

constant value of transverse shear strain through the thickness of the plate, and thus requires 

shear correction factors to account for the parabolic distribution of shear strain [20]. 

Displacement field of the FSDT can be written as shown in Eq. (2).  

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) + 𝑧 𝜙𝑥(𝑥, 𝑦) 

(2) 𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) + 𝑧 𝜙𝑦(𝑥, 𝑦) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) 

(𝑢, 𝑣, 𝑤) are the displacements of any point (𝑥, 𝑦, 𝑧) of the plate in X, Y and Z-directions 

respectively; (𝑢0, 𝑣0, 𝑤0) are the displacements of point (𝑥, 𝑦) at the neutral plane in X, Y and 

Z-directions respectively; (𝜙𝑥, 𝜙𝑦) are the rotations of a transverse normal about the Y- and X-

axes, respectively. FSDT models are implemented in FGP thermo-mechanical buckling 

analysis in [23-25, 31, 33, 48, 50, 53, 67-72] for rectangular FGPs and in [73] for circular FGP. 

3.2.3. Higher order shear deformation theory (HSDT) 

Also called refined nonlinear theory of plates. In order to eliminate the need for shear correction 

factor needed for FSDT, higher shear deformation theories were proposed. In addition, HSDT 

yields more accurate results than FSDT along with more computational efforts. Theoretically, 

shear deformation order may reach any order to achieve desired degree of accuracy; but in 

practice, the third order shear deformation is quite enough giving satisfying results with 

affordable computational effort. There are many third-order shear deformation theories 

(TSDT), but the most widely used is Reddy’s TSDT, proposed by Reddy [74]. Third order shear 

deformation theories are reviewed in [75]. Displacement field of the TSDT can be written as 

shown in Eq. (3). 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) + 𝑧 𝜓𝑥(𝑥, 𝑦) + 𝑧
2𝜉𝑥(𝑥, 𝑦) + 𝑧

3 𝜁𝑥(𝑥, 𝑦) 

(3) 
𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) + 𝑧 𝜓𝑦(𝑥, 𝑦) + 𝑧

2𝜉𝑦(𝑥, 𝑦) + 𝑧
3 𝜁𝑦(𝑥, 𝑦) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) 
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(𝑢0, 𝑣0, 𝑤0) denote the displacements of a point (𝑥, 𝑦) on the midplane, and (𝜓𝑥, 𝜓𝑦) are the 

rotations of normals to midplane about the Y and X-axes, respectively. TSDT models are 

implemented in FGP thermo-mechanical buckling analysis in [26, 76-78] for rectangular FGPs 

and in [30] for skew FGP.  

Reddy’s TSDT is a TSDT in which the functions (𝜉𝑥 , 𝜉𝑦 , 𝜁𝑥  , 𝜁𝑦) are determined using the 

condition that the transverse shear stresses at the top and bottom surfaces are zero. By finding 

(𝜓𝑥 , 𝜓𝑦 , 𝜉𝑥 , 𝜉𝑦 , 𝜁𝑥  , 𝜁𝑦), Reddy’s TSDT displacement field reduced to Eq. (4). 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) + 𝑧 𝜙𝑥(𝑥, 𝑦) −
4𝑧3

3ℎ2
(𝜙𝑥 +

𝜕𝜔0
𝜕𝑥

) 

(4) 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) + 𝑧 𝜙𝑦(𝑥, 𝑦) −
4𝑧3

3ℎ2
(𝜙𝑦 +

𝜕𝜔0
𝜕𝑦

) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0(𝑥, 𝑦) 

(𝜙𝑥 , 𝜙𝑦) denote slopes of a transverse normal at the neutral plane. Reddy’s TSDT models are 

implemented in FGP thermo-mechanical buckling analysis only for rectangular FGP in [27, 35-

38, 41, 44-47, 49, 54, 79, 80]. 

3.2.4. Non-polynomial shear deformation theories (Non-polynomial SDTs) 

This is a category of shear deformation theories, in which the proposed displacement fields are 

not in polynomial form; instead, they may be in trigonometric, hyperbolic or any other non-

polynomial form. In literature of thermo-mechanical buckling analysis of FGP, the only used 

non-polynomial SDTs is hyperbolic SDT in [43] for a rectangular FGP.  

3.2.5. Four-variable shear deformation theories (Refined SDTs) 

In plate theories (CPT, FSDT, TSDT, Trigonometric SDT, Hyperbolic SDT) there are five 

variables to find in order to solve the plate problem. These variables are 𝑢0, 𝑣0, 𝑤0, 𝜙𝑥 and 𝜙𝑦. 

In order to simplify the problem, number of variables can be reduced to only four variables by 

splitting 𝑤(𝑥, 𝑦, 𝑧) to two parts (𝑤𝑏 , 𝑤𝑠), and express the inplane displacements as functions of 

these two parts as shown in Eq. (5). 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢0(𝑥, 𝑦) − 𝑧
𝜕𝑤𝑏
𝜕𝑥

− 𝑓(𝑧)
𝜕𝑤𝑠
𝜕𝑥

 

(5) 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦) − 𝑧
𝜕𝑤𝑏
𝜕𝑦

− 𝑓(𝑧)
𝜕𝑤𝑠
𝜕𝑦

 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤𝑏(𝑥, 𝑦) + 𝑤𝑠(𝑥, 𝑦) 

𝑤𝑏 , 𝑤𝑠 are the bending and shear components of transverse displacement. Now there are just 

four variables to find 𝑢0, 𝑣0, 𝑤𝑏 and 𝑤𝑠. This refinement, i.e. variables reduction, can be applied 
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to any shear deformation theory. In literature of thermo-mechanical buckling analysis of FGP, 

only Bateni [42] used the four-variable refined SDT. 

3.3.Von-Karman nonlinearities 

Von Karman nonlinearities are commonly used assumptions that consider simplified 

nonlinearity by assuming small strain with moderate rotation, aka moderately large deformation 

assumption [58, 62]. In literature, Von Karman nonlinearities are also called Geometrical 

nonlinearity or kinematic nonlinearities, and it is commonly considered in thermo-mechanical 

buckling analysis of FGPs. When Von Karman introduced to CPT it can be referred to as CPT 

with Von Karman nonlinearities, or Von Karman plate theory.  

4. Properties characterization of FGP 

Properties of FGP at any point can be specified using function models or micromechanics 

models. Following is a brief on the characterization methods those are used in the literature of 

FGP thermo-mechanical buckling analysis. 

4.1. Function models 

Microstructure of FGP changes continuously, through at least one dimension, from one 

composition to another. This change may be designed to have any function. Function models 

may directly describe properties variation or just the microstructure variation, i.e. volumetric 

ratios of each component. The common functions used in modelling FGPs are listed below. 

4.1.1 Power function model 

Power function model is the most commonly used function in FGP studies. Functionally graded 

materials that obey power function rule are called (P-FGM). The power function expresses 

directly property variation or volume fraction change. If it describes the volume fraction change 

then a micromechanical model, e.g. Voigt, Mori-Tanaka…, is needed to obtain the distributed 

properties. Power law expressing volume fraction through FGP may have the form of Eq. (6), 

presented by Amoushahi [65] considering the coordinate system shown in Fig. 6. 

 

Fig. 6 FGP’s cross section and coordinate system 

 

Metal surface (z= -h/2) 
 

+Z 

h/2 

h/2 

 +X 
Mid-plane: z = 0 

Ceramic surface (z= +h/2) 
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𝑣𝑐(𝑧) = (
1

2
+
𝑧

ℎ
)
𝑛

,
−ℎ

2
 ≤ 𝑧 ≤  

ℎ

2
 

(6) 

𝑣𝑐(𝑧) is the volumetric fraction of ceramic at plane (𝑧), 𝑛 is the power index value. Note that 

if the power index 𝑛 is zero, then the plate will be homogenous plate. If the power index is 1, 

then the variation will be linear. At 𝑧 = +ℎ/2 the material is pure ceramic, 𝑣𝑐(ℎ/2) = 1. Also 

at 𝑧 = −ℎ/2 the material is pure metal 𝑣𝑐(−ℎ/2) = 0. 

4.1.2 Sigmoid function model 

Functionally graded materials that obey sigmoid power function rule are called (S-FGM) or (S-

P-FGM). Sigmoid power function is the combination of two different power functions, one for 

positive range of 𝑧 and one for the negative range of 𝑧. Sigmoid power function is used to obtain 

volume fraction 𝑣𝑐, then a micromechanical approach, e.g. Voigt, Mori-Tanaka… is used to 

obtain the distributed properties. Sigmoid power model ensures smooth distribution of the 

resulting stress [59, 81]. An example of sigmoid power function is shown in Eq. (7) that is 

found in [76] considering the coordinate system shown in Fig. 6. 

𝑣𝑐(𝑧) =

{
 

 (
1

2
+
𝑧

ℎ
)
𝑛

,
−ℎ

2
 ≤ 𝑧 ≤  0

(
1

2
−
𝑧

ℎ
)
𝑛

, 0 ≤ 𝑧 ≤  
ℎ

2

 
(7) 

Sigmoid power function model is rarely used in modeling FGP for thermo-mechanical buckling 

analysis. Specifically, it has been implemented just by Duc [76] and Chikh [43]. 

4.2. Micromechanics models 

Aim of these methods is to predict the effective properties of a composite at given point or 

lamina as a function of the material and geometric of the composite microstructure using the 

volumetric ratios obtained by a function model. Daniel [82] categorized these methods as 

follows.  

4.2.1 Mechanics of materials methods  

These methods are made simple by assuming uniform strain (parallel, rule of mixture, Voigt 

model) or uniform stress (series, inverse rule of mixture, Reuss model) [82]. Both of them are 

shown in Eq. (8). 

𝑉𝑜𝑖𝑔𝑡 𝑚𝑜𝑑𝑒𝑙 (𝑅𝑢𝑙𝑒 𝑜𝑓 𝑚𝑖𝑥𝑡𝑢𝑟𝑒):   𝐶∗ = 𝑣𝑐𝐶𝑐 + 𝑣𝑚𝐶𝑚 = 𝑣𝑐𝐶𝑐 + (1 − 𝑣𝑐)𝐶𝑚 

(8) 

𝑅𝑢𝑒𝑠𝑠 𝑚𝑜𝑑𝑒𝑙 (𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝑟𝑢𝑙𝑒 𝑜𝑓 𝑚𝑖𝑥𝑡𝑢𝑟𝑒):   𝐶∗ = 
1

𝑣𝑐
𝐶𝑐
+
𝑣𝑚
𝐶𝑚

= 
1

𝑣𝑐
𝐶𝑐
+
(1 − 𝑣𝑐)
𝐶𝑚

 

𝐶∗ is the effective property, 𝐶𝑐, 𝐶𝑚 are properties of the consistent, 𝑣𝑐 , 𝑣𝑚 are their volume 

fractions. Voigt model is the most popular in studies of FGP thermo-mechanical buckling 

analysis. 
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4.2.2 Theory of elasticity methods  

Applies theory of elasticity on a simplified model, resulting in close-form solutions for elastic 

properties. Common methods are self-consistent methods (effective medium approximation) 

and Mori-Tanaka method (effective field approximation) [82]. Self-consistent method is used 

when a crack introduced to the problem [83]. Mori-Tanaka method is used to count for 

randomness of particulates distribution in a continuous phase [19]. In the literature of thermo-

mechanical buckling analysis of FGPs, Fan [38] used the self-consistent model; and Taj [30] 

and Sharma [69, 70] used Mori-Tanaka model. 

4.2.3 Semi-empirical methods 

Use simple interpolation between bounds obtained by micromechanics methods, while giving 

comparatively better results [82]. The most common semi-empirical method is Halpin-Tsi 

method. In the literature of FGP thermo-mechanical buckling analysis, Halpin-Tsai model has 

been implemented by Yu [44] and Wu [71]. 

5. Buckling 

Buckling of a plate can be defined as the loss of its stability under compressive loading [84]. 

That is, the shape of the buckled structure changes into a different configuration when the loads 

reach some critical value. Buckling occurrence depends on the shape of the structure, properties 

of the material, loading configuration and boundary conditions. Different bodies buckles in 

different ways. Columns and flat plates experience bifurcation buckling, aka classical buckling; 

while curved plates experience snap-through buckling and cylindrical shells experience finite 

disturbance buckling [62]. 

5.1. Stability equation 

Stability equations are the equations derived to obtain buckling loads and their associated mode 

shapes. Approaches used to obtain stability equations are minimum total potential energy 

approach, and linear equations approach. 

In the first approach, equilibrium equations are derived based on the principle of minimum total 

potential energy, and then solved for minimum buckling load. Most of studies in literature use 

this approach in detecting instability. 

The second approach is called linear equations approach, which yields stability equations as 

linear ordinary differential equations, which are easy to solve. This group contains Trefftz 

criterion and adjacent equilibrium criterion. According to the Trefftz, aka Minimum Potential 

Energy Difference, criterion, a structure is in a configuration of stable equilibrium if and only 

if positive change in total potential energy occurs corresponding to any sufficiently small and 

kinematically admissible displacement. In the literature of FGP thermo-mechanical buckling 

analysis, Shariyat [29] used Trefftz criterion in detecting instability of perforated FG annular 

sector plates modeled using 3D elasticity theory. The second approach in the group of linear 

equation approach is adjacent (neighboring) equilibrium criterion, which considers the 

equilibrium configuration at the buckling (bifurcation) point and an adjacent configuration that 

is very close just after buckling point [84]. Many published works used this method, examples 

can be found at [39, 42, 50].  
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5.2. FGP buckling 

Aydogdu [85] studied the conditions for bifurcation buckling to exist in the case of FGPs; 

concluding that for unsymmetrical FGP, under only in-plane compression load, bifurcation can 

only occur when all edges are clamped. That is because in-plane (stretching) and out-plane 

(bending) displacements are coupled, just like the case of unsymmetrical laminated plates [62]. 

Therefore, in-plane load, if even one edge of the unsymmetrical FGP is simply supported the 

plate will bend. Under uniform shear load bifurcation can occur at plates with clamped as well 

as simply supported edge, since both of these boundary conditions provide twisting resistance. 

The stability problem of functionally graded plates is very sensitive to the type of boundary 

conditions and the form of material variation across the plate thickness. In order for bifurcation 

point (buckling load) to exist at plate under in-plane compression, initial flatness is necessary. 

That is, plate has to be initially flat and has to stay flat until buckling occurs. Otherwise, it will 

not arrive to the bifurcation point, and just exhibits bending deformation. Initial flatness may 

be interrupted not only by in-plane loads with unclamped boundary conditions, but also by 

initial imperfections in the structure. Under biaxial in-plane compression, if loads suitably 

selected, in-plane strain may vanish, then bifurcation point will occur on simply supported 

plates even if the plate is non-symmetric. Pre-buckling status, i.e. stress and strain, has to 

studied before conducting buckling studies [62]. An attempt to decouple the stretching and 

bending deformations, in-plane loads/boundary conditions made to act on the physical neutral 

plane [86]. Physical neutral plane is the plane that has neither stress nor strain under pure 

bending. According to Zhang [87] using coordinate system shown in  

Fig. 7, the discrepancy between the physical neutral plane and the mid-plane (𝐶) can be 

calculated using the relation in Eq. (9). In Eq. (9) 𝐸(𝑧) is the function that describes the 

variation of the elasticity module through the thickness of the plate. Note that if the plate is 

homogeneous, i.e. 𝐸(𝑧) = 𝑐𝑜𝑛𝑠𝑡., 𝐶 will vanish and the two planes will coincide on each other. 

𝐶 = ∫ 𝐸(𝑧) 𝑧 𝑑𝑧
+
ℎ
2

−
ℎ
2

∫ 𝐸(𝑧) 𝑑𝑧
+
ℎ
2

−
ℎ
2

⁄  (9) 

 

Fig. 7 Neutral and mid planes of FGP 
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Initial geometry imperfections have been considered in many published studies. Normally 

initial imperfections are introduced to the analysis as pre-existing lateral deformation. Recent 

articles that consider initial imperfections are [25, 37, 79].  

5.3. FGP thermal buckling 

Temperature generates in-plane compression load between every two opposite inextensible 

edges. If the neutral plane is assumed to be coincident with the mid-plane of non-symmetrical 

FGP under thermal load, all edges has to be clamped in order to bifurcation point to occur [88]. 

If all edges are free to expand, i.e. movable, there will be no in-plane thermal stress and the 

temperature effect will be only on properties of the materials. For symmetrical FGP, if the plate 

is initially flat, it remains flat until bifurcation point occurs. Initiation of lateral deflection under 

the applied load, below bifurcation point, results into the plate bending and the bifurcation never 

occurs, instead of that, it becomes a bending problem. This condition occurs when a rectangular 

FGP with simply supported boundary conditions is under thermal load, provided that the 

material distribution across the plate thickness is not symmetric with respect to plate’s mid-

plane unless physical neutral plane is considered [62, 85]. Swaminathan [19] presented a 

comprehensive review on thermal analysis of FGPs.  

5.4. Thermal loads 

Thermal loads applied on a FGP can be expressed by constant or changing temperature through 

one dimension or more. Temperature variation may be given directly as a spatial function or 

derived from heat conduction problem. Temperature variation equation, normally through 

thickness, may be a constant, e.g. [68, 89], linear, e.g. [89, 90] or nonlinear equation, e.g. [34, 

80]. Temperature variation may be also given as heat conduction problem as in [32, 33, 42, 49, 

91].  

5.5. Temperature-dependent FGP 

Thermal load does not just generate stresses in the structure, it also affect the structure’s 

material properties. Considering this effect of temperature rises the complexity level of the 

analysis. In the literature on FGP thermo-mechanical buckling, temperature-dependency effect 

on the analysis results has been studied by Shukla [68], Lal [80] and Jari [78] by comparing 

results of analysis with and without considering martial properties dependency on temperature. 

Other studies those considered temperature-dependent material properties are [24, 25, 27, 30, 

32, 35, 38, 42, 45, 48, 49, 53, 66, 69, 70, 72, 76, 77, 92]. Examples of studies those considered 

temperature-independent material properties are [22, 23, 26, 29, 36, 41, 50, 65].  

5.6. FGP thermo-mechanical buckling 

FGP, as functionally graded materials, are expected to withstand highly elevated temperature 

without failure. Normally, in addition to the thermal loads there are mechanical loads acting. In 

that case, the FGP has to withstand both the thermal and mechanical loads at the same time. 

There is a huge amount of published works deal with mechanical buckling or/and thermal 

buckling of FGP separately, but small amount of them treat the thermo-mechanical buckling 

case as defined here as buckling due to simultaneous application of thermal and mechanical 

loads. This situation is complicated enough so that until now no exact solution available even 

for the simplest configuration possible. Existence of bifurcation point has to be examined 

through the analysis of pre-buckling state of the plate. Zhang [92] and Kowal-Michalska [22] 

attempted to apply the concept of physical neutral plane.  
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6. Solution procedures 

There are many solution methods have been applied in various FGP analysis problems. Solution 

methods can be categorized as exact, semi analytical and approximate methods. However, only 

approximate methods have been applied to solve the thermo-mechanical buckling of FGP. 

Approximate methods contain two main categories, approximately analytical methods and 

numerical methods. Many methods fall under this category. However only few have been 

applied to solve the buckling of FGP under combined thermal and mechanical loads. 

6.1. Approximate analytical methods 

These methods seek to obtain approximate solution as a function. This group contains the 

following methods. 

6.1.1 Ritz method 

Ritz method is a simple and convenient method based on the principle of minimum potential 

energy. In literature of thermo-mechanical buckling of FGPs it is found that Ritz method has 

been used in snap-through buckling of thermally post-buckled plate analyses by: Kiani [32], 

who analyzed static and dynamic case for circular FGPs using Ritz method with Gram-Schmidt 

process; and Zhang [92], who analyzed the static case of rectangular FGP using multi-term Ritz 

method. 

6.1.2 Galerkin method 

Galerkin method is a special case of the weighted residual method. This method deals with the 

governing differential equation directly instead of the energy functional. Therefore, Galerkin 

method is more general than Ritz method [58]. Galerkin method is one of the most commonly 

used methods in analyzing thermo-mechanical buckling of FGPs. Duc and various co-authors 

investigated thermo-mechanical buckling and post-buckling of FGPs based on: CPT [66], 

FSDT [24, 53] and Reddy’s TSDT [26, 41]. Other researchers also presented thermo-

mechanical buckling analysis of symmetric FGPs [43, 76], stiffened FGPs [25, 27, 35], porous 

FGPs [37], square FGP based on CLPT [22] and rectangular FGP based on four-variable refined 

plate theory by using multi-term Galerkin method [42]. 

6.1.3 Perturbation methods 

Perturbation methods can solve various boundary-value problems in elastic structures[93], by 

starting from the exact solution of a related, simpler problem. There are main two versions of 

this method: traditional and two-step perturbation methods. Fallah [67] compared the two 

variations of this method, i.e. one- and two- step perturbation method, for nonlinear analysis of 

FGP with thermo-mechanical loading, and concluded that the two-step method must be used 

instead of the one-step method. Fellah [33] also applied two-step perturbation method to 

investigate thermo-mechanical buckling of circular FGP. This method is the most used one in 

analysis of thermo-mechanical buckling of FGPs. Shen and his various co-authors used two-

step perturbation method repeatedly to investigate thermo-mechanical buckling and post-

buckling of various continuous, laminated and sandwich FG reinforced plates, with or without 

elastic foundation [44, 46, 49, 54, 79] in various thermal environments, and in hygrothermal 

environment [45]. Fan [38] used two-perturbation method to investigate thermo-mechanical 

buckling of cracked FG reinforced plate. 



A. Hassan, N. Kurgan 

359 

 

6.1.4 Power series Frobenius method 

This method aims to find an infinite series solution for ordinary differential equations. 

Yaghoobi [50] used this method to obtain approximate analytical solution for the ordinary 

differential equations those have been reduced analytically from the governing equations of 

stability to investigate thermo-mechanical buckling of FGP. 

6.1.5 Fast converging finite double Chebyshev series 

In this method, displacement functions and loading are approximated in space domain by finite 

degree double Chebyshev polynomials. This method used by Shukla [68] to investigate thermo-

mechanical post-buckling of FGP. 

6.2. Numerical methods 

Numerical methods obtain approximate solution as a value at many points of the solution 

domain. These methods are used in order to avoid difficulties associated with the analytical 

solution methods [56].  

6.2.1 Finite element methods (FEM) 

Finite element method is a powerful method used in solving differential equations those 

describe engineering systems. The concept behind these methods is that they divide the problem 

domain into smaller simpler geometric shapes; so they deal with the problem of interest as 

assemblage of sub-problems those are simpler and easier to solve [20]. FEMs have been used 

in the analysis of thermo-mechanical buckling of FGPs based on various theories. Following, 

FEM implementations are categorized based on the considered model of the FGP. 

Based on various plate theories (e.g. FSDT, TSDT): Recently, Moita [94] used FEM based on 

Reddy’s TSDT, to compare between linear and nonlinear mechanical and thermo-mechanical 

buckling of rectangular FGP. FEM has been also used in investigation of thermo-mechanical 

buckling of: rectangular FGPs by Talha [77], skew FGPs by Taj [30], rectangular FGP with an 

elliptical cutout by Abolghasemi [73], and sandwich FGPs by Chen [95]. Lal and co-authors 

investigated stochastic thermo-mechanical buckling and post-buckling of FGPs with holes [36], 

and further included temperature dependency [80]. Sharma imbedded elasto-plasticity to the 

thermo-mechanical buckling and post-buckling investigation of FGPs with cutout [70] and 

further included temperature dependency [69]. Mania [23] investigated the dynamic thermo-

mechanical buckling in addition to the static buckling. Recently, Correia [96] conducted multi-

objective optimization study including buckling analysis of thermo-mechanical loading for 

FGP using FEM. 

Based on theory of elasticity: Shariyat [29] investigated the thermo-mechanical buckling of 

perforated annular sector using curved 3D B-splined C2-continuous element. 

Many commercial finite element packages provide the ability to model FGPs based on both 

plate theories and 3D elasticity theory. Discussion of these packages is out of the scope of this 

review. However, detailed illustration to model  and conduct buckling analysis of rectangular 

plates including FGPs using models based on FSDT and 3D elasticity theory using ANSYS® 

APDL [97] is provided by Hassan [98]. 
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6.2.2 Finite strip methods (FSM) 

FSM is a variation of the finite element method, where elements are long strips laid parallel to 

one another to form the plate [65]. Functionally graded finite strip element is made of mixture 

of metal and ceramic [99]. This method has many variations depending on the proposed basis 

shape functions, one of which is the complex finite strip method, which is used by Amoushahi 

[65] to analysis thermo-mechanical buckling of FGPs. 

6.2.3 Isogeometric analysis (IGA) 

IGA is an integration of spline-based Computer Aided Design (CAD) with finite element 

method FEM into a single model [78, 100]. IGA bases geometry and solution on same spline 

function, which makes it easy to have exact description of geometrical complexities [31]. IGA 

usually based on Non-Uniform Rational B-Spline (NURBS). NURBS-based IGA has been 

applied by Jari [78] and Yu [31] in the analysis of the thermo-mechanical buckling of FGPs. 

6.2.4 Differential quadrature method (DQM) 

DQM approximates the partial derivative of a function at a given discrete point as a weighted 

linear combination of the function values at all the discrete points of the domain [72]. The key 

to implement DQM is to determine the weighting coefficients [101]. This method is used in 

investigating the dynamic thermo-mechanical buckling of FGP by Yang [72] and Wu [71]. 

Mansouri used new DQM that was proposed by Wang [102] to investigate thermo-mechanical 

buckling of: orthotropic FGPs [103] and orthotropic FGP on elastic foundation in thermal and 

moisture environment [47]. 

6.2.5 Meshless method 

Meshless methods do not require connected nodes. These promising methods continue to 

improve and get more attention and implementations in engineering field [81, 104, 105]. This 

category includes wide range of subcategories. Shams [48] used Element-Free Galerkin (EFG) 

method to investigate thermo-mechanical buckling of FGP. 

6.2.6 Shooting method 

Shooting method solves boundary value problem after converting it to initial value problem, 

using trial initial conditions and interpolations in order to correct the initial condition until final 

condition be satisfied [105]. Shooting method has been used in investigating thermo-

mechanical buckling of circular FGP by Li [34]. 

7. Concluding remarks and future direction 

The present study presents a review on literature of modelling techniques and solution methods 

for the thermo-mechanical buckling of functionally graded plates. Following conclusions can 

be drawn based on the literature reviewed. 

There is no publication found to obtain exact elasticity solution or even semi-analytical solution 

for the FGP buckling under combined thermal and mechanical loads. 

Mostly used methods are Galerkin method, Perturbation method and finite element method. 

Just few solution methods used in this field of analysis. Many other numerical and approximate 

analytical methods can be implemented and compared with the available results in the literature. 
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Rectangular FGPs are the mostly studied; circular FGPs get less attention and skew FGPs are 

rare in this field. Other general shape of plates are not even exist in this literature. 

Stiffened, perforated and cracked FGPs have minimum attention in this field of analysis. 

FGP models based on elasticity are rare in this literature. Models based on plate theories are 

more common. 

Relatively new plate models, as Carrera’s unified formulation CUF [106], have not 

implemented yet in this field of study. 

Dynamic thermo-mechanical buckling of FGP is a missing topic. 

Most of the reported researches include post-buckling study along with the buckling study. 

Many studies consider the combined thermal and mechanical load only in the post-buckling 

study, but not in the buckling study. These studies are excluded from this review. 

Existing gaps found in the literature of the thermo-mechanical buckling analysis of FGP, offer 

many chances to contribute. Implementation of the already used solution methods but for other 

models of FGP, implementation of never used solution methods, obtaining an exact solution 

for any FGP configuration and implementation of CUF model are suggested topics for future 

researches. 

This review aimed at stimulating researchers to contribute to this field of study, so better 

analysis tools will be available to designers to make maximum benefit from the promising FGM 

concept. 
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