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Abstract 

The combined effects of hall current, thermal radiation on an unsteady MHD free convection casson fluid flow of a 
viscous, incompressible and electrically conducting fluid past an infinite vertical plate are investigated in presence of 
heat transfer. Numerical solutions of the non-linear coupled governing equations is obtained by finite element technique. 
The expressions for primary fluid velocity, secondary fluid velocity and fluid temperature, skin friction due to primary 
and secondary velocity fields and rate of heat transfer coefficient due to temperature at the plate are obtained and 
discussed with the help of different material parameters like Grashof number for heat transfer, Casson fluid parameter, 
Magnetic field parameter, hall parameter, thermal radiation parameter, Prandtl number. Finally, it is seen that the 
numerical results of the present study conform very well to those of previous studies reported in available scientific 
literatures. 
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1. Introduction  

 The description of the laws of physics for space and time-dependent problems are usually 
expressed in terms of partial differential equations (PDEs). For the vast majority of geometries and 
problems, these PDEs cannot be solved with analytical methods. Instead, an approximation of the 
equations can be constructed, typically based upon different types of discretizations. These 
discretization methods approximate the PDEs with numerical model equations, which can be solved 
using numerical methods. The solution to the numerical model equations are, in turn, an 
approximation of the real solution to the PDEs. The finite element method (FEM) is used to compute 
such approximations. The finite element method is a numerical method for solving problems of 
engineering and mathematical physics. The words "finite element method" were first used by Clough 
in his paper in the Proceedings of 2nd ASCE (American Society of Civil Engineering) conference on 
Electronic Computation in 1960. Several authors are applying finite element method in their research 
problems. Baltacıoğlu et al. [1] studied large deflection analysis of laminated composite plates 
resting on nonlinear elastic foundations by the method of discrete singular convolution. Shu et al. [2] 
studied the applications of generalized differential and integral quadrature to solve boundary layer 
equations. Civalek et al. [3] studied discrete singular convolution approach for buckling analysis of 
rectangular Kirchhoff plates subjected to compressive loads on two-opposite edges. The combined 
effects of heat and mass transfer on unsteady MHD natural convective flow past an infinite vertical 
plate enclosed by porous medium in the presence of thermal radiation and Hall Current was 
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investigated by Ramana Murthy et al. [4]. Rao et al. [5] found the numerical results of the non-linear 
partial differential equations of free convective magnetohydrodynamic flow past semi-infinite 
moving vertical plate with the effects of thermal radiation and viscous dissipation using finite 
element technique. Srinivasa Raju [6] studied the combined effects of thermal-diffusion and 
diffusion-thermo on unsteady free convection fluid flow past an infinite vertical porous plate in the 
presence of magnetic field and chemical reaction using the finite element technique. Srinivasa Raju 
[7] studied the combined effects of Soret and Dufour on natural convective fluid flow past a vertical 
plate embedded in porous medium in presence of thermal radiation via finite element method. 
Srinivasa Raju et al. [8] studied the joint influence of transpiration and hall effects on unsteady 
magnetohydrodynamic free convection fluid flow over an infinite vertical plate using finite element 
method. Srinivasa Raju et al. [9] studied unsteady magnetohydrodynamic free convective flow past a 
vertical porous plate with variable suction by applying finite element technique. Sailaja et al. [10] 
found the numerical solutions of double diffusive effects on magnetohydrodynamic mixed 
convection casson fluid flow towards a vertically inclined plate filled in porous medium in presence 
of biot number using finite element technique.  

 The study of non-Newtonian fluids is an important topic for researchers due its industrial 
applications in construction of paper production, polymer sheet, hot rolling, glass-fabric, wire 
drawing and petroleum production. The tangent hyperbolic fluid, Maxwell fluid, Williamson fluid, 
viscoelastic fluids, etc. are non-Newtonian fluids describing the nonlinearity behaviour. Casson fluid 
model is one of the most commonly used rheological model and has number of examples such as 
blood, fruit juices, soup, sauce, chocolate, etc. A magnetohydrodynamics (MHD) flow of                          
non-Newtonian fluid was first studied by Sarpkaya [11] and then followed by many authors. The 
two-dimensional flow over unsteady stretching surface presented by Mukhopadhyay et al. [12]. 
Mukhopadhyay et al. [13] found numerical solutions for a steady heat transfer in a Casson fluid 
boundary layer flow over exponentially stretching permeable surface in presence of heat flux. Raju et 
al. [14] discussed Casson fluid over an exponentially porous stretching sheet in presence of heat and 
mass transfer effects. Das et al. [15] analyzed the combined effects of heat and mass transfer for 
unsteady Casson fluid in a vertical plate. Mahanta et al. [16] studied the concepts of 
magnetohydrodynamic 3D Casson fluid flow pass a porous linear stretching sheet. The influence of 
thermal radiation on unsteady free convection flow of an electrically conducting, gray gas near 
equilibrium in the optically thin limit along an infinite vertical porous plate were investigated by 
Seddeek and Aboeldahab [17] in the presence of strong transverse magnetic field imposed 
perpendicularly to the plate, taking hall currents into account. 

 The main goal of this paper is to find the numerical solutions using a powerful technique namely 
the finite element method for the primary and secondary velocities and temperature distributions to 
study the unsteady magnetohydrodynamics casson fluid flow over a vertical plate in the presence of 
hall current and thermal radiation. The effects of different involved parameters such as grashof 
number for heat transfer, magnetic field parameter, hall parameter, thermal radiation parameter, 
angle of inclination, Prandtl number on the primary and secondary fluid velocities  and temperature 
distributions are plotted and discussed. 

2. Mathematical formulation 

The simultaneous effects of thermal radiation and hall current on unsteady MHD free convective 
Casson fluid flow over a vertical plate in presence of heat transfer is studied. For this present 
investigation, let x axis is taken to be along the plate and y axis normal to the plate. Since the 
plate is considered infinite in x direction, hence all physical quantities will be independent of 
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x direction. Therefore, all the physical variables become functions of y   and t  only. The wall is 
maintained at constant temperature wT   higher than the ambient temperature T  respectively. All the 
fluid properties except the density in the buoyancy force term are constant and the plate is 
electrically non-conducting. The viscous dissipation and the joule heating effects are negligible in the 
energy equation. A uniform magnetic field of magnitude oB  is applied normal to the plate. The 
transverse applied magnetic field and magnetic Reynolds number are assumed to be very small, so 
that the induced magnetic field is negligible. Also, assumed that the electric field is neglected. The 
rheological equation of state for the Cauchy stress tensor of Casson fluid [18] is written as 

*
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where  is shear stress, 0  is Casson yield stress,  is dynamic viscosity, * is shear rate, 

ijijee and ije  is the   thji,  component of deformation rate,   is the product based on the                   
non-Newtonian fluid, c  is a critical value of this product, B  is plastic dynamic viscosity of the 
non-Newtonian fluid, 
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denote the yield stress of fluid. Some fluids require a gradually increasing shear stress to maintain a 
constant strain rate and are called Rheopectic, in the case of Casson fluid (Non-Newtonian) flow 
where c  . 
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Substituting Eq. (3) into Eq. (4), then, the kinematic viscosity can be written as 
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However, Cogley et al. [19] showed that, in the optically thin, limit for a gray gas near equilibrium 
the following relation holds: 
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With all the above assumptions and the usual boundary layer and Boussinesq’s approximation are 
([17]): 

Equation of Continuity: 
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Momentum Equations: 
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Energy equation: 
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The corresponding boundary conditions are given by  
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We now define the similarity variables as follows: 
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Where  )(thh   is a similarly parameter length scale and 0u  is the free stream velocity. In terms 
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Where 0v  is a non-dimensional transpiration parameter, clearly 00 v  and 00 v  indicates suction 
or injection respectively. Substituting (12) and (13) in Eqs. (8), (9) and (10) yields  
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 Where 1C  is an arbitrary constant. At 1C  = 2 and by integrating equation (18), one obtain 
th 2  which defines the well-established scaling parameter for unsteady boundary layer 

problems ([20]). Hence, the similarity equations are obtained as  
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Where 


huoRe  is the Reynold’s number.       

3. Numerical Solutions By Finite Element Method 

3.1. Finite Element Method The finite element method (FEM) is a numerical and computer based 
technique of solving a variety of practical engineering problems that arise in different fields such as, 
in heat transfer, fluid mechanics (Bhargava and Rana [21]), chemical processing (Lin and Lo [22]), 
rigid body dynamics (Dettmer and Peric [23]), solid mechanics (Hansbo and Hansbo [24]) and many 
other fields. It is recognized by developers and users as one of the most powerful numerical analysis 
tools ever devised to analyze complex problems of engineering. The sophistication of the method, its 
accuracy, simplicity, and computability all make it a widely used tool in the engineering modelling 
and design process. It has been applied to a number of physical problems, where the governing 
differential equations are solved by transforming them into a matrix equation. The primary feature of 
FEM is its ability to describe the geometry or the media of the problem being analyzed with great 
flexibility. This is because the discretization of the domain of the problem is performed using highly 
flexible uniform or non uniform patches or elements that can easily describe complex shapes. The 
method essentially consists in assuming the piecewise continuous function for the solution and 
obtaining the parameters of the functions in a manner that reduces the error in the solution. An 
excellent description of finite element formulations is available in Bathe [25] and Reddy [26]. The 
steps involved in the finite element analysis areas follows. 

3. 1. 1. Discretization of the Domain: The basic concept of the FEM is to divide the domain or 
region of the problem into small connected patches, called finite elements. The collection of 
elements is called the finite element mesh. These finite elements are connected in a non overlapping 
manner, such that they completely cover the entire space of the problem. 

3. 1. 2. Generation of the Element Equations: 

 A typical element is isolated from the mesh and the variational formulation of the given 
problem is constructed over the typical element. 

 Over an element, an approximate solution of the variational problem is supposed, and by 
substituting this in the system, the element equations are generated. 

 The element matrix, which is also known as stiffness matrix, is constructed by using the 
element interpolation functions. 

These steps results in a matrix equation of the form     eee FuK  , which defines the finite element 
model of the original equation. 

3. 1. 3. Assembly of the Element Equations: The algebraic equations so obtained are assembled by 
imposing the inter element continuity conditions. This yields a large number of algebraic equations 
known as the global finite element model, which governs the whole domain. 

3. 1. 4. Imposition of the Boundary Conditions: On the assembled equations, the Dirichlet's and 
Neumann boundary conditions (17) are imposed. 

3. 1. 5. Solution of Assembled Equations: The assembled equations so obtained can be solved by 
any of the numerical techniques, namely, Gauss elimination method, LU decomposition method, and 
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the final matrix equation can be solved by a direct or indirect (iterative) method. For computational 
purposes, the coordinate y  is varied from 0  to 10max y , where maxy  represents infinity 

.,.ei external to the momentum, energy and concentration boundary layers. The whole domain is 
divided into a set of 40  line segments of equal width 1.0 , each element being two-noded. 

In one-dimensional space, linear element, quadratic element, or element of higher order can be taken. 
The whole domain is divided into a set of 40  intervals of equal length 1.0 . At each node three 
functions are to be evaluated. Hence after assembly of the elements we obtain a set of 123  equations 
which are nonlinear. Therefore, an iterative scheme must be utilized in the solution. After imposing 
the boundary conditions, a system of equations has been obtained which is solved by the Gauss 
elimination method while maintaining an accuracy of 0.00005. A convergence criterion based on the 
relative difference between the current and previous iterations is employed. When these differences 
satisfy the desired accuracy, the solution is assumed to have been converged and iterative process is 
terminated. The Gaussian quadrature is implemented for solving the integrations. The code of the 
algorithm has been executed in MATLAB “bvp4c” running on a PC. Excellent convergence was 
achieved for all the results. 

4. Study of Grid Independence of Finite Element Method 

Table 1. Grid Invariance test for primary velocity, secondary velocity 

 and temperature profiles at γ  = 0.5   
 

Mesh (Grid) Size  = 0.0001 Mesh (Grid) Size  = 0.001 

u w θ u w θ 

0.0000000000 0.0000000000 1.0000000000 0.0000000000 0.0000000000 1.0000000000 

0.7234765887 0.2388297170 0.9743975401 0.7232695222 0.2387289256 0.9740068913 

0.8706516027 0.3663154840 0.9391090870 0.8701688051 0.3660761118 0.9382099509 

0.8546831608 0.4013786912 0.8931466937 0.8538790941 0.4009748697 0.8916516900 

0.7927082181 0.3905737996 0.8354807496 0.7915706635 0.3899961710 0.8333606124 

0.7131123543 0.3587989509 0.7647858262 0.7116740942 0.3580629230 0.7620986700 

0.6202089190 0.3155803680 0.6786968708 0.6185632348 0.3147315979 0.6756160259 

0.5118013620 0.2630710304 0.5725184679 0.5101124048 0.2621920109 0.5693576336 

0.3824672103 0.1994354427 0.4371592700 0.3809781671 0.1986510009 0.4343856573 

0.2214809209 0.1180272698 0.2559509277 0.2205180824 0.1175117642 0.2541863024 

0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 0.0000000000 
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To investigate the sensitivity of the solutions to mesh density, it was observed that in the same 
domain the accuracy is not affected, even if the number of elements is increased, by decreasing the 
size of the elements. This serves only to increase the compilation times and does not enhance in any 
way the accuracy of the solutions, as shown in table 1. Thus, for computational purposes, 1000 
elements were taken for presentation of the results. Excellent convergence was achieved in the 
present study. 
 
5. Program Code Validation: 

 In order to ascertain the accuracy of the numerical results, the present results are compared with 
the previous analytical results of Mohamed Seddeek and Emad Aboeldahab [17] in table 2 when        
 γ  = 0. They are found to be in an excellent agreement. Also, concluded a set of results 

corresponding to various special cases.                                                                                               

(i) Substitute M = 0, m = 0, R = 0 and  γ = 0 in equations (19), (20) and (21) yields identical results to 
those well known in hydrodynamics (Schlichting [21]).                                                                       

ii) Substitute  m = 0, R = 0 and  γ  = 0 in equations (19), (20) and (21) yields identical results to those 
well known in  (Nirmal et al. [27]).                                                                                                    

Table 2:  21 &  is the Skin-friction results obtained in the present study and  *
2

*
1 &   is the               

Skin-friction results obtained by Mohamed Seddeek and Emad Aboeldahab [17] when γ  = 0 
 

m R M 1 *
1 2 *

2 

0.5 0.1 5.0 6.822532 6.82251 – 1.960668 – 1.960666 

0.7 0.1 5.0 7.951355 7.95135 – 2.926234 – 2.92623 

0.5 0.1 7.0 3.179777 3.17976 – 3.655797 – 3.65579 

0.5 0.4 5.0 7.358323 7.35839 – 1.945116 – 1.945116 

6. Results and Discussions: 

We solve the similarity equations (19), (20) and (21) numerically subject to the boundary 
conditions given by (17). Graphical representations of the numerical results are illustrated in figure 
(2) through figure (13) to show the influences of different parameters on the boundary layer flow. 
During the course of numerical calculations of the primary velocity, secondary velocity and 
temperature, the values of the Prandtl number are chosen for Mercury (Pr = 0.025), Air at Co25  and 
one atmospheric pressure (Pr = 0.71), Water (Pr = 7.00) and Water at Co4  (Pr = 11.40). To examine 
the effect of parameters related to the problem on the velocity field and skin-friction numerical 
computations are carried out at Pr = 0.71. To find solution of this problem, we have placed an infinite 
vertical plate in a finite length in the flow. Hence, we solve the entire problem in a finite boundary. 
However, in the graphs, the y values vary from 0 to 10, and the velocity, temperature, and 
concentration tend to zero as y tend to 10. This is true for any value of y. Thus, we have considered 

finite length.                                                                                                                                        
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6. 1. Effect of Grashof number for heat transfer, Gr. Figs. 1 and 2 show that the primary velocity 
and the secondary velocity increase with an increase in Grashof number Gr . Grashof number Gr 
signifies the relative effect of the thermal buoyancy force to the viscous hydrodynamic force. As 
expected, it is observed that there is a rise in the fluid velocity due to the enhancement of thermal 
buoyancy force. It is due to the fact that an increase of Grashof number has a tendency to increase the 

  thermal effect.                                                                                                                                       

6. 2. Effect of Magnetic field parameter, M. Figs. 3 and 4 display the effect of magnetic parameter 
(M) on primary and secondary velocities. It is seen from these figures that the primary as well as 
secondary velocity falls when M increases. That is the primary or secondary fluid motion is retarded 
due to application of transverse magnetic field. This phenomenon clearly agrees to the fact that 
Lorentz force that appears due to interaction of the magnetic field and fluid velocity resists the fluid 

motion.                                                                                                                                             

 

Fig. 1. Effect of Gr on primary velocity profiles 

 

Fig. 2. Effect of Gr on secondary velocity profiles 

6. 3. Effect of Hall parameter, m. Figure (5) depicts the primary velocity profiles as the Hall 
parameter increases. We see that u  increases as increases. It can also be observed that velocity 
profiles approach their classical values when the Hall parameter becomes large ( m > 5). In figure 
(6), we see that w  profiles increase for m < 1 and decrease for  m > 1.                                               
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6. 4. Effect of thermal radiation parameter, R. The effects of the thermal radiation parameter on 
the primary velocity and temperature profiles in the boundary layer are illustrated in figures (7) and 
(8) respectively. Increasing the thermal radiation parameter produces significant increase in the 
thermal condition of the fluid and its thermal boundary layer. This increase in the fluid temperature 
induces more flow in the boundary layer causing the velocity of the fluid there to increase. The effect 
of thermal radiation parameter on secondary velocity profiles is shown in the figure (9). From this 
figure, we observe that the secondary velocity is increasing with increasing values of thermal 

radiation parameter.                                                                                                                              

 

Fig. 3.  Effect of M on primary velocity profiles 

 

Fig. 4. Effect of M on secondary velocity profiles 

6. 5. Effect of Prandtl number, Pr. The Prandtl number is the ratio of momentum diffusivity to the 
thermal diffusivity. Figure (10) illustrates the temperature profiles for different values of Prandtl 
number. From this figure, it is observed that an increase in the Prandtl number results a decrease of 
the thermal boundary layer thickness and in general lower average temperature within the boundary 
layer. The reason is that smaller values of Prandtl number are equivalent to increasing the thermal 
conductivities, and therefore heat is able to diffuse away from the heated surface more rapidly than 
for higher values of Pr. This is because, either increase of kinematic viscosity or decrease of thermal 
conductivity leads to increase in the value of Prandtl number. Hence temperature decreases with 

increasing of Prandtl number.                                                                                                              
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Fig. 5.  Effect of m on primary velocity profiles 

 

Fig. 6. Effect of m on secondary velocity profiles           

                                                             

Fig. 7. Effect of R on primary velocity profiles 

6. 6. Influence Of Casson Fluid Parameter, γ. The velocity profile in the Fig. 11 shows that rate of 
motion is significantly reduced with increasing of Casson fluid parameter. Also, it is observed from 
this Fig. 11, the boundary layer momentum thickness decreases as increase of Casson fluid 

parameter.                                                                                                                                          
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6. 7. Skin-friction and Nusselt number: The skin-friction values due to primary and secondary 
velocities are evaluated from Eq. (22) as a function of the axial coordinate is shown in table 3. The 
local wall shear stress increases with increasing thermal radiation parameter. The value of the            
skin-friction becomes negative, which implies that after some time there occurs a reverse type of 
flow near the moving plate. Physically this is also true as the motion of the fluid is due to plate 
moving in the vertical direction against the gravitational field. The observation from table 3, the         
skin-friction increases with the increase of Hall parameter and the rate of heat transfer increases with 
increasing values of the radiation parameter. The Local Nusselt number for different values of the 
radiation parameter and Prandtl number are shown in table 4. The trend shows that the Local Nusselt 
number increases with increasing radiation parameter and decreases with rising values of Prandtl 

number.                                                                                                                                             

                                                                                                             
                                                                        

                                   

Fig. 8. Effect of R on temperature profiles     

 

Fig. 9. Effect of R on secondary velocity profiles 
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Fig. 10. Effect of Pr on temperature profiles 

 

Fig. 11. Effect of γ on temperature profiles 

Table 3: Skin-friction  21 &  results 
 

M m R 1 2 

5.0 0.5 0.1 6.84817254 – 1.90448721 

7.0 0.5 0.1 3.25402586 – 3.54925469 

5.0 0.7 0.1 7.94225137 – 2.88492594 

5.0 0.5 0.4 7.372948051 – 1.90549712 
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Table 4. Rate of heat and mass transfer values 
 

Pr R Nu 

0.71 0.1 5.93614498 

7.00 0.1 4.01797759 

0.71 0.4 6.15974892 

7. Conclusions: 

This work investigated the combined effects of hall current and thermal radiation on an unsteady 
MHD free convective Casson fluid flow near a vertical plate in presence of heat transfer. The 
similarity solutions were obtained using suitable transformations and the resulting similarity ordinary 
differential equations were solved by using finite element method. A parametric study illustrating the 
influence of different flow parameters on primary velocity, secondary velocity and temperature are 
investigated. (i). The Grashof number has an accelerating effect on the flow velocity due to the 
enhancement in the buoyancy force. (ii). Thermal buoyancy force tends to retard the secondary fluid 
velocity throughout the boundary layer region. (iii). Hall parameter tends to accelerate both the 
primary and secondary fluid velocities throughout the boundary layer region. (iv). Finally, the 
analytical solutions and the numerical solutions were compared and the numerical comparisons 

showed an excellent compatible between the values.                                                                             
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