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Abstract 

 

In this paper, we study a fitted operator average finite difference method for solving singularly perturbed parabolic 

convection-diffusion problems with boundary layer at right side. After discretizing the solution domain uniformly, the 

differential equation is replaced by average finite difference approximation which gives system of algebraic equation 

at each time levels. The stability and consistency of the method established very well to guarantee the convergence of 

the method. Furthermore, some numerical results are given to support our theoretical results and to validate the 

betterment of using fitted operator methods. 
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1. Introduction 

The one dimensional partial differential equation: 

2
2

2
( , ) ( , ) ( , ) ( , ) ( , )

u u u
x t x t x t u x t f x t

t x x


  
   

  
    (1) 

is a parabolic equation that used to model different physical phenomena such as heat distribution 

in a rod, in which case ( , )u x t represents the temperature at a point x  and time t and 2 0  is the 

terminal diffusivity of the material with its value depends on what material the rod is composed 

of. The differential equation of the form of Eq. (1) is also called heat or diffusion equation. We 

assume that the left end at 0x  a prescribed temperature 0 ( )u t and the right end at 1x   a 

prescribed temperature 1( )u t , which produces the boundary conditions 0(0, ) ( )u t u t and
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1( , ) ( ),u L t u t 0t  . We also need information about the starting temperature that gives the initial 

condition, ( ,0) ( ), 0 .u x s x x L    

From the nature of modeling heat flow or chemical diffusion, the constant 2
K

 


, where K is the 

termal conductivity,  is specific heat and  is density of the material of the body. Here, assume 

that K  so that let denote 2   ,  is a parameter satisfying 0 1   , then parabolic partial 

differential equation of Eq. (1) on the rectangle : (0,1) (0, ]Q T   in the space time domain, where 

T is some fixed positive time with the stated condition called as the singularly perturbed convection 

– diffusion parabolic initial – boundary value problem of the form: 

2

2
( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ), ( , )

u u u
x t x t a x t x t b x t u x t f x t x t Q

t x x

  
    

  
    (2) 

subject to the conditions: 

 

 

 

0 0

1 1

( ,0) ( ) on : ( ,0) : 0 1

(0, ) ( ) on : (0, ) : 0

(1, ) ( ), on : (1, ) : 0

xu x s x S x x

u t q t S t t T

u t q t S t t T

   

   

   

     (3) 

For convince the coefficients ( , ) and ( , )a x t b x t are assumed to be sufficiently smooth functions 

such that: 

0 1( , ) 0 and ( , ) 0a x t b x t             (4) 

Under sufficient smoothness and compatibility conditions imposed on the functions

0 1( ), ( ), ( )s x q t q t  and ( , )f x t , the initial-boundary value problem admits a unique solution ( , )u x t

the assumed condition ( , ) 0a x t  which exhibits a boundary layer of width ( )O  near the boundary

1x  of Q  , [7]. 

The singularly perturbed parabolic initial-boundary value problem of Eq. (2) is called convection-

diffusion type with ( , ) ( , ) ( , )
u u

x t a x t x t
t x

 


 
is considered as a convection term, but if ( , ) 0a x t  , 

then it is called as reaction–diffusion type whose reaction term ( , ) ( , ) ( , )
u

x t b x t u x t
t





 with 

2

2

u

x




  is the diffusion term in both cases. 

In the past few decades, various ε-uniform numerical schemes are proposed in the literature for 

singular perturbation problems (SPPs). The numerical methods for SPPs are widely classified into 

two categories, namely, the fitted operator methods and the fitted mesh methods. In fitted operator 

methods, exponential fitting factors (artificial viscosity) will be used to control the rapid growth 

or decay of the numerical solution in the boundary layers [1]. Whereas, fitted mesh methods use 

nonuniform meshes, which will be fine or dense in the boundary layer regions and coarse outside 
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the layer regions. The well-known layer resolving fitted meshes are Bakhvalov meshes, which will 

be obtained from some nonlinear mesh generating function, and Shishkin meshes, which are 

piecewise-uniform and easy to obtain (see. [3], [4], [5] and [7]). 

Different methods had been constructed to find the numerical solution of singularly perturbed 

parabolic problems; For instance, Spline in compression method [6], Bessel collocation method 

[8], A robust finite difference method [2]; A novel adaptive mesh strategy [9], An adaptive grid 

method [10] and so on.  Hence, several numerical methods have been developed by different 

scholars for solving these problems and due to the importance of the problems in real life 

situations, the need to find numerical method(s) for approximating its solution is gainful. Thus, it 

is necessary to develop more accurate, stable and convergent numerical method for solving the 

singularly perturbed parabolic partial differential equations. 

Therefore, the main objective of this study is to develop more accurate, stable and convergent a 

fitted operator average finite difference method for solving singularly perturbed parabolic 

convection- diffusion problems with right boundary layer at right side. 

2. Formulation of the Method 

Now, consider Eq. (2) on a particular domain ( , ) : (0,1) (0,1]x t Q    with the initial and boundary 

conditions in Eq. (3) and with remembering the condition in Eq. (4) to sure that the problem has 

boundary layer at 1x  . To solve this problem by the finite difference method, let andM N be 

positive integers. When working on Q , we use a rectangular grid k
hQ whose nodes are  ,m nx t  for

0,1, . . . and 0,1, . . .m M n N  . Here, 0 10 . . . 1Mx x x      and 0 10 . . . Nt t t T      

such grids are called tensor-product grids. For simplicity, throughout this material equidistant grids 

are considered as: 

, , 0,1,2, . . . ,

1
, , 1 0,1,2, . . . ,

n

m

T
t nk k n N

N

x mh h M
M

  

  

            (5) 

Denote the approximate solution ( , )n
m m nu u x t at an arbitrary point ( , )m nx t . To obtain a finite 

difference scheme, we need to approximate the derivatives in Eq. (2) by some finite differences. 

Assume that the equation given in the form of Eq. (2) is satisfied at the point 
1

,
2

th

m n
 

 
 

 level. 

Then at this point Eq. (2) can be written as: 

1 1 1
1 1 1 12 2 22
2 2 2 2

2

n n n
n n n n

m m m
m m m m

u u u
a b u f

t x x

  
     

   
  

     (6) 
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For the derivatives with respect to t, using Taylor series expansion at the point 
1

,
2

m n
 

 
 

we 

have: 
1 1 1

1 2 2 22 2 3 3
1 2 4

2 3
( )

2 8 48

n n n
n

m m mn
m m

k u k u k u
u u O k

t t t

  



  

    
  

      (7) 

1 1 1
1 2 2 22 2 3 3
2 4

2 3
( )

2 8 48

n n n
n

m m mn
m m

k u k u k u
u u O k

t t t

  
   

    
  

     (8) 

Subtracting Eq. (8) from Eq. (7), gives the central difference approximation in such a point as 

1

12

1

n
n n

m m mu u u

t k


 

  


           (9) 

where the truncation term 

1

22 3

1
3

.
24

n

mk u

t




  


 

If we consider the other terms of Eq. (6) related to the points  ,m n  and  , 1m n , using its 

average, which can be written: 

1 1
1 1 1 1 12 22
2 2 2 2

2 2

n n
N n N nn n n n

m m x m x m
m m m m

u u L u L u
a b u f

x x

 
     

    
 

          (10) 

1 1 1 1 1
1 1 1 11 1 1 1 1

2

1 1 1 1
2

2

2
where,

2

2

2

n n n n n
mm m m mN n N n n n n n

x m x m m m m m

n n n n n
mm m m mn n n n

m m m m

u u u u u
L u L u a b u f

h h

u u u u u
a b u f

h h

    
       

   

  
      

  
     

 

1 1 14 4 3 4
2

2
4 4 3 4

.
12 6 12 6

n n n n n n
m m m m m m

h
u a u u a u

x x x x

        
     

    
 

Substituting Eqs (9) and (10) into Eq. (6) gives: 

 

1 1 1 1 1
1 1 1 11 1 1 1

2

1 1 1 1 1
3

2

2
2 2

2

2

2

n n n n n
mm m m mn n n n n

m m m m m

n n n n n
mm m m mn n n n n

m m m m m

u u u u u
u u k a b u

h h

u u u u u
k a b u k f f

h h

    
      

    

   
     

 

   
        

 

   (11) 
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where  3 1 22 .      

To obtain the more accurate numerical solution and uniformly convergent numerical method, let 

introduce the fitting factors 1 and 2  on the obtained scheme Eq. (11) at both  ,
th

m n and 

 , 1
th

m n level respectively as: 

 

1 1 1 1 1
1 1 1 11 1 1 1

1
2

1 1 1 1 1
2

2

2
2 2

2

2

2

n n n n n
mm m m mn n n n n

m m m m m

n n n n n
mm m m mn n n n n

m m m m m

u u u u u
u u k a b u

h h

u u u u u
k a b u k f f

h h

    
      

    

   
     

 

   
      

 

   (12) 

To get the value of fitting factors 1 and 2 , let denote 
h

 


and after multiplying both side by 

h  then evaluate the limit both sides of Eq.(12) as 0h  gives: 

1
1 1 1 1 1 1

1 1 1 1
0

2
1 1 1 1

0

lim ( 2 ) ( )
2

lim ( 2 ) ( ) 0
2

n
mn n n n n

mm m m m
h

n
mn n n n n

mm m m m
h

a
u u u u u

a
u u u u u


    
   



   


 
      
 

 
      
 

  (13) 

Since, the finite difference approximation terms are at  ,
th

m n and  , 1
th

m n levels in different 

time direction, so that Eq. (13) satisfied if and only if: 

1
1 1 1 1 1 1

1 1 1 1
0

2
1 1 1 1

0

lim ( 2 ) ( ) 0
2

lim ( 2 ) ( ) 0
2

n
mn n n n n

mm m m m
h

n
mn n n n n

mm m m m
h

a
u u u u u

a
u u u u u


    
   



   


  
       
  


          

 

which is written as 

 

 

 

 

1 1 1
1 1 1 11 20 0

1 1 1
1 1 1 1

0 0

lim lim2 2
and

lim 2 lim 2

n n n n n n
m mm m m m

h h

n n n n n n
m mm m m m

h h

a u u a u u

u u u u u u

  
   

 

  
   

 

  
 

     
    (14) 

Here, the main aim is to determine the values of the introduced fitted parameters 1  and 2 ; and 

as Roos et. al., [7] provide with the detailed proves for the asymptotic expansion of Eq. (2) with 

the conditions given in Eqs. (3) and (4) given by: 
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(1 )
(1, )

0( , ) ( , )
x

a teu x t u x t A



   

for the solution of its reduced form is 0 ( , )u x t and A will be defined using the given boundary 

conditions that is written at the point nt t as: 
(1 )

(1)
0( ) ( )

n x
n n au ex u x A




   

(1)
(1)0

0
lim (0)

n
n

a
a mn n

m
h

e eu u A  



               (15) 

From Eq. (11) inducing the indices, we get: 

 

   
(1)

(1) (1) (1)1 1
0

lim

n
n n n

a
a m a an n

m m
h

e e e eu u A     
 


       (16) 

   
(1)

(1) (1) (1)1 1
0

lim 2 2

n
n n n

a
a m a an n n

mm m
h

e e e eu u u A     
 


          (17) 

Using Eqs. (15), (16) and (17), Eq. (14) becomes: 

 
1 1

(1) (1) (1) (1)
1 1coth and coth

2 2 2 2

n n n na a a a       
      

   
   (18) 

From Eq. (12) and the values in Eq. (18), the fitted operator finite difference scheme given by: 

 

1 1 1 1 1
1 1 1 11 1 1 1

1
2

1 1 1 1 1
2

2

2
2 2

2

2

2

n n n n n
mm m m mn n n n n

m m m m m

n n n n n
mm m m mn n n n n

m m m m m

u u u u u
u k a b u u

h h

u u u u u
k a b u k f f

h h

    
      

    

   
     

 

   
      

 

 

This can be written as the recurrence relation of the form: 

1 1 1 1 1 1 1
1 1

n n n n n n n
m m m m mm mE u F u G u H      

            (19) 

for  1,2, . . ., and 0,1,2, . . . ,m M n N  , 

where   
1 1

1 1 11 1 1 1

2 2 2

2
, 2 ,

2 2

n n
m mn n n n

m m m m

a a
E k F k b G k

h h h h h

 
   

      
          

    
 

 2 2 21 1
1 1

2 2 2

2
2

2 2

n n
m mn n n n n n n

m m m m mm m

a a
H k u k b u k u k f f

h h h h h
 

 

       
             

     
 

The system of equations to be solved is tridiagonal: equation number m in the system only involves 

unknowns with numbers 1, and 1m m m  , so that the matrix of the system has non-zero elements 
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only on the diagonal and in the positions immediately to the left and to the right of the diagonal. 

The coefficients 1 1 1, ,n n n
m m mE F G    and the right-hand side 1n

mH   are given, and we assume that 

they satisfy the conditions:- 
1 1 1 1 1 10, 0, 0 andn n n n n n

m m m m m mE F G F E G           

These conditions ensure that the matrix is diagonally dominant, with the diagonal element in each 

row being at least as large as the sum of the absolute values of the other elements. 

1 1
1 1 11

2 2 2

2
2

2 2

n n
m mn

m

a a
k b k k

h h h h h

 


      
          

     
 

Therefore, 1 1 1j j j
i i iF E G    , It is easy to see that these conditions are satisfied by our 

difference equation system. Thus, Eq. (19) can be solved by Thomas algorithm. 

3. Stability of the Method 

A partial differential equation is well-posed if the solution of the partial differential equation is 

exists, and depends continuously on the initial condition and boundary conditions. The Von 

Neumann stability technique is applied to investigate the stability of the developed scheme in Eq. 

(15), by assuming that the solution of Eq. (15) at the grid point  ,m nx t  is given by: 

n imn
m eu        (20) 

where 1,i    is the real number and  is the amplitude factor. 

Now, putting Eq. (20) into the homogeneous part of Eq. (19) gives: 

  2 2 21 1 1

2 2 2

2
2

2 2

n n
m mi i i in n n n

m m m me e e e
a a

E F G k k b k
h h h h h

       
       

               
     

 

2 2 2

2 2 2

1 1 1

2
2

2 2

n n
m mi i i in

m

i in n n
m m m

e e e e

e e

a a
k b k k k k

h h h h h

E F G

     

    

   
      

  
  

 

But, 
 

cos sin cos sin 2cos
cos sin

cos sin cos sin 2 sin

i i

i

i i

e e
e

e e

i i
i

i i i

  

 

  

       
    

        

 

and, we have the values of 1 1 1, andn n n
m m mE F G   from Eq. (15) which implies: 
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2

2

1 1

2 2

2 4 sin

2 4 2 4

n
ma

k k
h hi

k k
h h


 

  
 

 

 

The condition of stability is 1   and for sufficiently small k, we have 1  . Hence, the scheme 

given in Eq. (19) is stable for any value of mesh sizes in both with respect to andx t . Thus, the 

scheme in Eq. (19) is unconditionally stable. 

4. Consistency of the method 

Local truncation errors refer to the differences between the original differential equation and its 

finite difference approximations at grid points. To investigate the consistency of the method, we 

have the local truncation errors from Eqs (9), (10) and (11) given as:- 

 1
3 1 22n

mT                    (21) 

where 

1

22 3

1
324

n

mk u

t




  


  and   

1 1 14 4 3 4
2

2
4 4 3 4

.
12 6 12 6

n n n n n n
m m m m m m

h
u a u u a u

x x x x

        
     

      

 

Thus, the right hand side hand of Eq. (21) vanishes as 0 and 0k h   implies 1 0n
mT   .

 

Hence, the scheme is consistent with the order of convergence  2 2k hO   . Therefore, the scheme 

developed in Eq. (19), is convergent. A consistent and stable finite difference method is 

convergent by Lax's equivalence theorem [7]. 

5. Numerical Examples and Results 

To validate the applicability of the method, model problems have been considered and these examples 

have been chosen since they have been widely discussed in the literature.  

Example 1: Consider the singularly perturbed parabolic problem: 

2

2
(1 (1 )) ( , ), ( , ) (0,1) (0,1]

u u u
x x f x t x t

t x x

  
      

  
 

subject to the conditions: 

( ,0) ( ), 0 1

(0, ) 0 (1, ), 0 1

u x s x x

u t u t t

  

   
 

We choose the initial data ( )s x and the source function ( , )f x t to fit with the exact solution: 
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1 1 1
( , ) ( (1 ) )

x
te e e eu x t x


   

       

As the exact solution for this example is known, for each perturbation parameter  , we calculate 

absolute maximum errors defined by: 

,

,

( , )

max ( , )
M N

m n

nM N
m n m

x t Q

E u x t u


   

where ( , )m nu x t  and n
mu respectively, denote the exact and approximate solution. In addition, we 

determine the corresponding order of convergence by: 

, 2 ,2
, log( ) log( )

log(2)

M N M N
M N E E

R
 




  

Table 1. Comparison of maximum absolute errors for Example 1 at the number of intervals M, N 

   32,  10 64, 20 128, 40 256, 80 512, 160 

With fitting factors    
010  3.2004e-06 7.8950e-07 1.9651e-07 4.9075e-08 1.2263e-08 
110  3.6140e-04 8.9287e-05 2.2181e-05 5.5427e-06 1.3851e-06 
210  1.2823e-02 2.9914e-03 5.4598e-04 1.2963e-04 3.2304e-05 
310  1.7476e-02 9.1719e-03 4.6673e-03 2.0168e-03 5.3827e-04 
410  1.7476e-02 9.1720e-03 4.6963e-03 2.3759e-03 1.1949e-03 

Without fitting factors    
010  1.8093e-06 4.4513e-07 1.1081e-07 2.7681e-08 6.9183e-09 
110  2.3684e-03 5.8236e-04 1.4515e-04 3.6249e-05 9.0592e-06 
210  3.0639e-01 9.9446e-02 2.0645e-02 4.3908e-03 1.0958e-03 
310  9.5155e-01 8.5929e-01 6.7603e-01 4.0072e-01 1.5072e-01 
410  1.1607e+00 1.1820e+00 1.1463e+00 1.0424e+00 9.2024e-01 

 

Table 2. Comparison of maximum absolute errors for Example 1 at the number of intervals M, N 

   32,  10 64, 20 128, 40 256, 80 512, 160 

Present method     
010  3.2004e-06 7.8950e-07 1.9651e-07 4.9075e-08 1.2263e-08 
210  1.2823e-02 2.9914e-03 5.4598e-04 1.2963e-04 3.2304e-05 
410  1.7476e-02 9.1720e-03 4.6963e-03 2.3759e-03 1.1949e-03 

Results in  [1]    
010  6.8921e-04 3.7085e-04 1.9290e-04 9.8440e-05 4.9739e-05 
210  7.1532e-02 4.5000e-02 2.6393e-02 1.4579e-02 7.1423e-03 
410  9.3382e-02 5.5430e-02 3.9185e-02 2.1997e-02 1.1787e-02 
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Table 3. Comparison of Rate of convergence for Example 1 at the number of intervals M, N 

   32,  10 64, 20 128, 40 256, 80 

Present method    
010  2.0192 2.0063 2.0015 2.0007 
210  2.0998 2.4539 2.0744 2.0046 
410  0.9301 0.9657 0.9831 0.9916 

Results in  [1]     
010  0.8941 0.9430 0.9705 0.9849 
210  0.7203 0.7853 0.8376 0.8912 
410  0.8211 0.9108 0.9624 0.9674 

 

Example 2: Consider the singularly perturbed parabolic problem: 

2
2 2

2

1 1
(1 sin ) (1 sin ) ( , ) ( , ),

2 2 2

u u u t
x x x u x t f x t

t x x

   
        

  
 

for  ( , ) (0,1) (0,1]x t    and the source function  
33( , ) 1 (1 )sinxf x t x t t t     

subject to the conditions: 

( ,0) 0, 0 1

(0, ) 0 (1, ), 0 1

u x x

u t u t t

  

   
 

Since the exact solution is not known, we use the double mesh principle to obtain the maximum 

absolute errors and to investigate the rate of convergence. 

Table 4. Comparison of maximum absolute errors for Example 2 at the number of intervals M, N 

   32,  16 64, 32 128, 64 256, 128 512, 256 

With fitting factors     
010  8.7112e-05 1.8949e-05 4.1396e-06 1.0346e-06 2.5881e-07 
110  3.4987e-04 8.7838e-05 2.1985e-05 5.4998e-06 1.3751e-06 
210  1.7357e-03 6.7495e-04 1.9879e-04 5.2071e-05 1.3176e-05 
310  1.8971e-03 1.0473e-03 5.5534e-04 2.7537e-04 1.0935e-04 
410  1.8971e-03 1.0473e-03 5.5579e-04 2.8673e-04 1.4569e-04 

Without fitting factors     
010  8.7165e-05 1.8953e-05 4.1427e-06 1.0353e-06 2.5902e-07 
110  5.3647e-04 1.3050e-04 3.2470e-05 8.1069e-06 2.0261e-06 
210  3.8366e-02 1.6433e-02 4.9141e-03 1.0717e-03 2.5149e-04 
310  1.1881e-01 1.0523e-01 8.0985e-02 5.0465e-02 2.3456e-02 
410  1.3687e-01 1.3825e-01 1.3548e-01 1.2804e-01 1.1388e-01 
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Table 5. Comparison of Rate of convergence for Example 2 at the number of intervals M, N 

   32,  16 64, 32 128, 64 256, 128 

With fitting factors    
010  2.2007 2.1946 2.0004 1.9991 
110  1.9939 1.9983 1.9991 1.9998 
210  1.3627 1.7635 1.9327 1.9826 
310  0.8571 0.9152 1.0120 1.3324 
410  0.8571 0.9141 0.9548 0.9768 

Without fitting factors    
010  2.2013 2.1938 2.0005 1.9989 
110  2.0394 2.0069 2.0019 2.0004 
210  1.2232 1.7416 2.1970 2.0913 
310  0.1751 0.3778 0.6824 1.1053 
410  - 0.0145 0.0292 0.0815 0.1691 

 

 

Fig. 1. Behavior of the solutions for Example 2 at 41064 andM N      
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Fig. 2. Pointwise absolute errors for Example 2 at 21032 andM N      

 

6. Discussion 

We have discussed a fitted operator average finite difference method for solving singularly 

perturbed parabolic convection- diffusion problems which have right boundary layer. The basic 

mathematical procedures are define the model problem, discretize the solution domain uniformly, 

replace the differential equation by central difference approximation to the time derivative and 

approximate the other terms by the average of the central approximation related to two level points. 

Then the central finite difference approximation gives three-term recurrence relations at each time 

level with respect to the spatial direction which is diagonal dominate, so that solved by Thomas 

algorism. Also, the stability and consistency of the method investigated very well to guarantee the 

convergence of the method. 

It can be seen from the results obtained and presented in Tables (1) and (4) shows that, the 

numerical methods presented in this study converge in the maximum absolute errors with more 

accurate solution than without fitted numerical method. For each , andM N  in Tables (1 - 5) 

shows the effectiveness of applying fitted operator in order to obtain more accurate numerical 

solution and to show the second order rate of convergence . Thus, from the results presented, we 

have evidence that the maximum absolute errors and the corresponding rate of convergence 

calculated using the present method is more accurate with higher rate of convergence than the 

existing methods. Figure 1, indicates the physical behavior of the problem while Figure 2 to 

indicates the position of boundary layer. 
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7. Conclusion 

In this study, we have discussed a fitted operator average finite difference method for solving 

singularly perturbed parabolic convection- diffusion problems. In order to obtain more accurate 

numerical solution, introduce and determine the values of fitting parameter. As shown in the 

investigation of consistency, the present method is second order convergent with respect to the 

two independent variables. The stability and consistency have been established very well to 

guarantee the convergence of the method.  Moreover, as some numerical results are calculated to 

support the theoretical results and to demonstrate the effectiveness and the advancement of using 

fitting operator method has a better numerical accuracy compared to without fitted operator and 

other methods. 
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