International Journal of Engineering & Applied Sciences (IJEAS)
Vol.10, Issue 1 (2018)21-34
http://dx.doi.org/10.24107/ijeas.420838

Int J Eng Appl Sci 10(1) (2018) 21-34

Analytical Buckling of FG Nanobeams on The Basis of A New One Variable First-Order
Shear Deformation Beam Theory

Mohammad Malikan ®*, Shahriar Dastjerdi "

# Department of Mechanical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
® Young Researchers and Elite Club, Mashhad Branch, Islamic Azad University, Mashhad, Iran
E-mail address: mohammad.malikan@yahoo.com **, dastjerdi_shahriar@yahoo.com °

ORCID numbers of authors:
0000-0001-7356-2168 2, 0000-0003-4256-240X °

Received date: 03.05.2018
Accepted date: 24.05.2018

Abstract

In this work, buckling analysis of functionally graded (FG) nanobeams based on a new refined beam theory has
been analyzed. The beam is modeled as an elastic beam subjected to unidirectional compressive loads. To
achieve this aim, the new obtained beam theory has only one variable which lead to one equation similar to
Euler beam theory and also is free of any shear correction factor. The equilibrium equation has been formulated
by the nonlocal theory of Eringen to predict small-scale effects. The equation has been solved by Navier’s
approach by which critical buckling loads have been obtained for simple boundaries. Finally, to approve the
results of the new beam theory, various beam theories have been compared.

Keywords: Buckling analysis, FG nanobeams, A new refined beam theory, Nonlocal elasticity theory, Navier’s
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1. Introduction

Carbon nanotubes (CNTSs) are seamless cylinders included one to multi-graphene layers with
open or close ending that they are called single-walled (SWCNT) or multi-walled carbon
nanotubes (MWCNT) [1]. Todays, the most manufactured CNTs are used in composite
materials and thin films [1]. The SWCNT is remarkably strong and hard [2], conducting
electric current and directing heat [3-5], which has led to the use of these materials in the
electronics industry [6-7]. The carbon nanotube promises a bright future in cellular
experiments because they can be used as nano-pipes to distribute very small volumes of fluid
or gas into living cells or on surfaces [8-10].

To exploit the industrial amazing properties of nanostructures, it can be highly recommended
that the mechanical behavior of them should be analyzed. In last years, this issue has been
taken into consideration by researchers around the world in order to identify the behavior of
them under various mechanical conditions. Among these researchers, Reddy [11]
reformulated beam theories by using nonlocal elasticity theory for vibrations, buckling and
bending analyses. Civalek et al. [12] analyzed natural frequencies of a skew symmetric
composite plate using discrete convolution method (DSC). Malikan et al. [13] published
stability of bi-layer graphene nanoplates subjected to shear and thermal forces on the basis of
a medium using numerical solutions. Malikan investigated stability analysis of a micro
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sandwich plate with graphene coating using the refined couple stress theory [14] and buckling
of graphene sheets subjected to nonuniform compression based on the four-variable plate
theory using an analytical approach [15]. Yao and Han [16] presented buckling of double-
walled carbon nanotubes with considering thermal influences. They obtained critical buckling
loads on the basis of Donnell’s equilibrium equation and solved the equation for simply-
supported boundary condition. Ansari et al. [17] studied coupled natural frequency analysis of
post stability functionally graded micro/nanobeams on the basis of the strain gradient theory.
Wang et al. [18] presented exact modes for post stability characteristics of nonlocal
nanobeams in a longitudinal magnetic field. Wang et al. [19] utilized both stress and strain
gradient continuum theories to consider buckling of nanotube which was embedded in an
elastic foundation. Timoshenko beam theory and Navier solution method were employed in
their study. They proved that both stress gradient and strain gradient predict the same results
if the nonlocal effect is not taken into account. Xiang et al. [20] used nonlocal elasticity
theory for studying nonlinear free vibration of double-walled carbon nanotubes based on
Timoshenko beam theory. Ansari et al. [21] developed Rayleigh—Ritz method for buckling of
carbon nanotubes considering thermal effects. They classical Donnell shell theory was
incorporated in conjunction with nonlocal elasticity theory of Eringen. Ansari et al. [22]
employed Timoshenko beam model to consider buckling and postbuckling of nanotubes using
nonlocal elasticity theory. The equations were solved with generalized differential quadrature
method and the pseudo arc-length technique for several boundary conditions. Ansari and
Arjangpay [23] presented using the meshless local Petrov-Galerkin method for various
boundary conditions to analyze carbon nanotubes under buckling and vibrations. The
vibration of thermally post-buckled carbon nanotube-reinforced composite beams resting on
elastic foundations has been examined by Shen et al. [24]. Beni et al. [25] studied vibration of
shell nanotubes using nonlocal strain gradient theory and molecular dynamics simulation.
Wang et al. [26] presented nonlinear vibration of nonlocal carbon nanotubes placed on the
visco-Pasternak foundation under excitation frequency. Civalek et al. [27] investigated
laminated composites in static conditions on the basis of nonlinear first-order shear
deformation theory. The equations were discretized and solved with the singular convolution
method (DSC). Reddy [28] developed couple stress theories for functionally graded Euler-
Bernoulli and Timoshenko microbeams. Reddy and Arbind [29] derived a couple stress
theory for bending analysis of Euler and Timoshenko functionally graded beams. Stability
analysis of nanotubes made of boron nitride embedded on the elastic matrix using DSC has
been presented by Mercan and Civalek [30]. Akgoz and Civalek [31] studied nonlocal
buckling of carbon nanotubes subjected to an axial compressive load sorrounded by Pasternak
matrix. In their study various beam theories were applied and governing equations were
analytically solved by Navier solution method. Civalek et al. [32] developed the modified
couple stress, the strain gradient and nonlocal elasticity theories for buckling of silicon
carbide nanowires-based Euler beam theory. Akgoz and Civalek [33] considers influences of
thermal and shear deformations on the vibrations of a functionally graded thick micro
composite beam.

In this theoretical work, we report a new beam theory by reducing the unknown variables
from a regenerated shear deformation theory. The functionally graded (FG) nanobeam is
modeled as an elastic beam which is subjected to unidirectional compressive load. The
influence of stress nonlocality is examined by using nonlocal elasticity theory of Eringen
which leads to a size-dependent equation. Furthermore, Navier’s technique is exerted to solve
the stability equation by assuming simply-supported boundary condition for both edges of the
beam. To approve the present formulation, various beam theories have been analyzed resulted
from several well-known references.
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2. Mathematical Formulation

Fig. 1 displays a realistic model for the nanobeam subjected to unidirectional compressive
loads with length L, outer diameter d and thickness h parallel to x and z-axes, respectively.
First, according to first-order shear deformation beam (FSDT) theory, the displacement field
is presented as below [13, 34-36]:

Fig. 1. The SWCNT subjected to the unidirectional compressive load

In Eqg. (1), the vector quantities of the neutral axis at directions of x and z are u and w,
respectively. Moreover, for defining of the rotation of beam elements around the x axis, ¢ is
used. First off, let us reconsider the simple first-order shear deformation theory (S-FSDT) by
which the deflections were re-formulated in the following equation [37-39]:

w =w (bending) +w (shear) 2

Also, ¢ parameter was developed as below:
_ ] dwy 3
{(P}—{ v } (3)

By replacement Eqgs. (2-3) in Eq. (1) the displacement field of the S-FSDT was rewritten as
follows [37-39]:

dw,, (x
U(X,Z) U(X)—Zb—()
= dx (4a-b)
W (X )+Ws (X )
Use of w =w, +w_might not be conceptual; Therefore, Eq. 4 would be refined in the
following:

= dx (5a-b)
W, (X )+W

{U (X,Z)} u(x)—zdwb—(x)
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So, we could use bending deflection to find the value of ws:

o, E(z)e, (62-b)
= a_
ze ZG (Z )7/xz
After obtaining Eq. (6) from S-FSDT the stresses can be found and then by substituting Eq.
(6) in the S-FSDT stress resultants, Eq. 7 will be calculated:

ol e =

Let us use fourth equation of FSDT’s governing equations in order to calculate ws based on
Wh.

dM
dx

_Qx =0 (8)
By imposing Eq. (8) into the stress resultants of Eq. (7):

diw, dw
E (Z)I°dx—3_AG (z)

dx =0 ®)

By integrating from Eq. (9) based on x, simplifying and then ignoring the integral constant
terms, the shear deflection will now be obtained as follows:

diw,

=W '=B 10
Ws dx ? (1)
Term B could be in both positive and negative signs that is explained:

B:E(Z)IC,G(Z)— E(Z) (11)

AG T 2(1+v)

where G represents the shear modulus, E is the Young’s modulus, Ic(ird4/64) denotes the

moment of area of the cross-section, A is the cross-sectional area and v is the Poisson’s ratio
for isotropic nanobeams. Afterwards, the new beam theory will now be achieved as:

u(x)—z dw (x)
Now: w, =w ; {U (X’Z)}: o (12a-b)
W (x,z) W(X)+Bd2\;\;(2x)

Regarding Hamilton’s principle, the potential energy in the whole domain of the beam (V) is
made available and is written in the variational form as below [40]:

N =65+=0 (13)
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In which ¢S is the variation of strain energy and ¢V is the variation of works, which are done
by external forces. The strain energy by variational formulation will be calculated:

88 = [[[ o 05,dv =0 (14)
The strain tensor in Eq. (14) is expanded as follows:

du  daw 1 dWw dw )
zZ—+-|B—+—
{gxx}z dx dx 2 dx dx (15a—b)
yXZ
Bd%/v

dx 3

With applying the variational formulation (6)=0) the nonlinear governing equation of motion
is derived:

2
S :0, d sz _Bd3Q3x _
dx dx

dw dw dw
N, |B? +2B + = 16

X( dx © i’ dx? ) (16)
In which My, Qy, and Ny are nonlocal stress resultants, respectively and qo is the transverse
static load which is ignored in this paper. Here, the quantity N, is the resultant with respect to

the axial applied compressive force. With regard to nonlocal theory of Eringen, the following
equation is employed [13, 40]:

d 2
(1—,le2)O'IJ :Cijkl &kl ; /l(nmz):(eoa)z, VZ :dx—z (17)

where p is the nonlocality factor and a is an interior determined length.

The material property gradation considering power law in the FG nanobeams is expressed as
[41-43]:

E(z)=E, +(EC—Em)[%+%jk (18)

Here E. and E, are the Young's modulus corresponding to ceramic and metal, respectively,
and k is volume fraction exponent or material grading/power law index. Due to insignificant
variation of the Poisson’s ratio, this variant is assumed to be constant along the thickness (v
(2) = v). From Eq. (18), when k— o, the FG nanobeam reduces to a pure metal one and for
case k=0, the plate becomes pure ceramic.

The stress resultants in local form are specified by relations below:

R S

Now, by substituting Eq. (15) into the Eq. (19) the stress resultants will be given as follows:
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g 4w

Mx ¢ dX2
s

X AGB ——

dx 2

The compressive force is assumed as follows [40, 44]:
N X = _Pcr (21)

Now, incorporating Eq. (17, 20-21) and inserting them into Eg. (16) and also some
manipulating, lead to the stability equation of one variable first-order shear deformation
theory (OVFSDT) as:

w =0: Elcdl\l\: +B’AG ﬂ—% Bzde\"é +2B dé\"[’l +d2‘"£ +
X dx dx dx dx
dw dw dw ¢2)
P.|B? +2B —+——+|=0
ﬂu( dx ® dx ° dx“j
Also by using Eq. (4) the S-FSDT equations could be obtained as follows:
dw dw, dw dw, dw
ow, =0:El,—>-P b+ S|+ uP, b+ = 1=0
" ° dx* Cr(dx2 dxzj 'ucr(dx“ dx“]
dw daw, dw dw, dw (2320)
W, =0:AG—=-P, | —L2+—= |+uP, | —2>2+ = 1=0
° dx 2 Cr(dx2 dXZ] 'ucr(dx“ dx“]
On the other hand, by using Eqg. (1) the FSDT equations could be obtained as follows:
dw de dw dw
ow =0:k AG —— |-P, —+uP.,. ——=0 24a
: (dx2 dx} o gx 2 e g (242)
2
5p=0:E1,92 1k AG (dﬂ—gpj:o (24b)
dx dx
Furthermore, for CPT the stability equation is obtained in the following form:
dw dw dw
ow =0:El,—-P, —+uP, —=0 25
ch4 Cr dxz /uCr dX4 ( )
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3. Navier’s technique

The Navier solution method has been applied to present simply-supported boundary condition
according to Eq. (26) [44].

w(x,t):i\Nmsin(%x}z‘”t (264)

m=1

go(x,t):iq)m cos(%x}\‘“‘ (26a)

m=1

where m is the half-wave number as a integer one, Wy, and &, are the unknown terms which
should be determined and also o is the natural frequency in vibrational analysis. Substituting
Eq. (26) into Egs. (22-25), the algebraic equation is obtained from which the critical buckling
load equation is calculated as follows:

« OVFSDT:
(]
(e (S (e e ol G (S (e (e

. CPT:
(7]
Py = (28)
mimz miz
SSRCES
e S-FSDT
S I R R
fomlz] el (]
. IESDT: i
K AG (@] +PCr( j T+ uP,, (@T k,AG (%j
L L
2 { }:o (30)
k,AG (Ej —EIC(M] —k.AG
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If determinant of coefficients of Egs. (29) and (30) is set to zero, the critical buckling load of
S-FSDT and FSDT can be calculated.

4. Numerical results

In the first glance it is required to consider the precision of the numerical results obtained
from the proposed beam theory with other theories. Hence, as can be seen in Tables 1 and 2,
references [45-47] are employed. In [45] a nano rod was based on the both Euler and
Timoshenko (Table 1) beam theories and the equations were solved by using an explicit
analytical method and differential transform method. On the other hand, in ref. [47] Euler and
Timoshenko nano rods were modeled and Navier solution method was utilized in order to
obtain numerical results. In fact, both thin and moderately thick beams are compared and
carried out with both ends simple boundaries. It is worth noting that with increasing length to
diameter ratio of the nano rod the results in the Tables are becoming closer to one another.
This means that for thin beams the proposed theory makes same predictions with Euler beam
theory which is an acceptable conclusion. Because thin beam theories like Euler can predict
appropriate results only for thin beams due to lack of considering transverse strain influences
in such a theory. This strain is fundamentally required for response of moderately thick beams
which is embedded in proposed theory. It can be seen that for lower values of length to
diameter ratio which the rod goes into moderately thick and thick cases the results of Euler
beam theory are in a major difference with present formulation. Furthermore, increasing
small-scale parameter decreases the gap between the results of current beam theory and
others. It is interesting to note that the results of S-FSDT and OVFSDT are corresponded to
each other completely. Note that the shear correction factor used in Timoshenko theory can be
a serious defect in light of the approximate quantity of it (ks=5/6). Although this value has
been applied for moderately thick models, it cannot be an exact value to analyze several cases,
in particular nanostructures. But in the proposed beam theory this extra factor is vanished
from the governing equation leads to further accurate results.

To have further comparison, Table 3 is presented in which the proposed theory is compared
with ref. [48] within which a functionally graded nanobeam was analyzed with both Euler and
Timoshenko beam theories and the equations were solved by Navier solution method. This
Table approved the results of previous Tables for thin beams in light of the proximity of all of
the beam theories to one another. Moreover, it can be seen that by an increase in the material
grading index the difference of the present theory with others will be increased; however, this
difference for moderately thick beams is further than thin ones. Generally, Tables 1 to 3 show
the close numerical results between the present theory and others from which the theory can
be confirmed. Although the new theory of beam which is used could not be a complete
theory, by carrying out the errors and refining them the more appropriate numerical results
will be obtained.
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Table 1. Results of critical buckling load (nN) developed from several theories for a rod
(E=1TPa, v=0.19, d=1nm)

PCr (nN)

€0a=0 nm e,a=0.5 nm eoa=1nm ea=1.5nm €,a=2 nm

EB” EB” EB” EB” EB”
L [45- OVFSDT [45- OVFSDT [45- OVFSDT [45- OVFSDT [45- OVFSDT

kK ek Kokk kK kK

(hm) 6],  FSDT 46], FSDT 46], FSDT 46],  FSDT 46], FSDT

ok ExS ExS >k

TB S-FSDT  TB S-FSDT  TB S-FSDT  TB S-FSDT  TB™  S-FSDT

[45] [45] [45] [45] [45]
agaa7 41000 ggog ATy 0es 44192 39paq 2023 5455 39292
10 3507 azeoo TSN aeasa GU00S 43332 SO%MT 38057 4L 34133
' 7609 * 47985 * s4152 % 40234 % 35252
33644 S0k 33077 3B 5486 318l 59149 2949 5605 20077
12 Soo 33237 STl sae7r JINY sai0s 2200 28707 2005 26086
' 33991 33418 > 3181~ 29449 * 26677
247118 20 a2 og5zs 23D o000 2237 pos7s 20729
14 2000 2a498 DU 24103 S50 23323 S04 22005 S0ol% 20301
' 24905 24505 237111+ 2231 * 2.0729
18025 1034 1744 18892 gy 18327y ug LTSI ga0e 10491
16 Tbece L8795 TSI 1gel6 eos 18008 [TUY 17205 100 16284
' 19034 18852 18327 17515 1.6491
14953 1021 g4y LTy gy LASTT 15994 1A0ST 539 13389
18 heos L4872 LM 1476 100 1a43p 1900 13018 15000 13257
' 15001 14907 14577 14057 1.3389
Lotgp 12156 oo 12082 o 11864 .. 11517 o 11064
20 1063 12959 yqggg 11985497 L1768 45 L1424 nggy  1O9TS
' 12156 12082 11864 11517 “ 11064

" Euler beam (EB).

™ Timoshenko beam (TB), ks=5/6.

™ Timoshenko beam (FSDT), Navier, ks=5/6.

Note that in [45] an explicit solution and in [46] differential transform method (DTM) were applied,
respectively. Also for EB in ref. [45-46] for e;a=0, 1 and 2 nm only the validation was existed, but others are
appeared by solving CPT in this paper.
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Table 2. Results of dimensionless critical buckling load developed from several theories for a rod

— P L?
(E=1TPa, v= 0.3, d=Inm,Pe, =——)
El,
Per
u=0nm? u=1nm? u=2 nm? u=3 nm? u=4 nm?

OVFSDT OVFSDT OVFSDT OVFSDT OVFSDT
L/d  Ee[47], FSDT EB[47], FSDT EB[47], FSDT EB[47], FSDT EB[47], FSDT
TB[47] S-FSDT TB[47] S-FSDT TB[47] S-FSDT TB[47] S-FSDT TB[47] S-FSDT

CPT CPT CPT CPT CPT
10.0305 9.1294 8.3769 7.739 7.1914
10 9.8696 9.6832 8.9830 8.8134 8.2426 8.0869 7.6149 7.4711 7.0761 6.9424
9.6227  10.0305  8.7583 9.1294 8.0364 8.3769 7.4244 7.739 6.8990 7.1914
9.8696 8.9830 8.2426 7.6149 7.0761
9.9093 9.6707 9.4433 9.2263 9.0191

20 9.8696 9.8223 9.6319 9.5858 9.4055 9.3604 9.1894 9.1453 8.9830 8.94
9.8067 9.9093 9.5705 9.6707 9.3455 9.4433 9.1308 9.2263 8.9258 9.0191
9.8696 9.6319 9.4055 9.189% 8.9830
9.8759 0.8371 9.7985 9.7603 9.7224
50 9.8696 9.8620 9.8308 9.8232 9.7923 9.7847 9.7541 9.7466 9.7161 9.7087

9.8595 9.8759 9.8207 0.8371 9.7822 9.7985 9.7440 9.7603 9.7062 9.7224
9.8696 9.8308 9.7923 9.7541 9.7161

Table 3. Results of dimensionless critical buckling load developed from several theories for a FG

— P, L°
nanobeam (E;=1TPa, E,=0.25TPa, v=0.3,P,, = )
El
PCr
ea=0 nm ea=0.5nm ga=1nm g,a=1.5nm €,a=2 nm
OVFSDT OVFSDT OVFSDT OVFSDT OVFSDT

K EB[48], FSDT EB[48], FSDT EB[48], FSDT EB[48], FSDT EB[48], FSDT
TB[48] S-FSDT TB[48] S-FSDT TB[48] S-FSDT TB[48] S-FSDT TB[48] S-FSDT

CPT CPT CPT CPT CPT
L/h=10

2.5213 2.4606 2.2948 2.0631 1.8076
0 2.4674 2.4056 2.4079 2.3477 2.2457 2.1895 2.0190 1.9685 1.7690 1.7247
2.4056 2.5213 2.3477 2.4606 2.1895 2.2948 1.9685 2.0631 1.7247 1.8076
2.4674 2.4079 2.2457 2.0190 1.7690
4.1820 4.0813 3.8063 3.4219 2.9982
03 4.0925 3.9901 3.9940 3.8941 3.7249 3.6317 3.3488 3.2650 2.9341 2.8607
' 3.9921 4.1820 3.8959 4.0813 3.6335 3.8063 3.2667 3.4219 2.8621 2.9982
4.0925 3.9940 3.7249 3.3488 2.9341
5.5468 5.4133 5.0485 4.5389 3.9769
1 5.4282 5.2924 5.2975 5.1650 4.9406 4.8170 4.4418 4.3307 3.8918 3.7944
5.3084 5.5468 5.1805 5.4133 4.8315 5.0485 4.3437 4.5389 3.805 3.9769
5.4282 5.2975 4.9406 4.4418 3.8918
6.9666 6.7988 6.3407 5.7006 4.9947
3 6.8176 6.6470 6.6534 6.4870 6.2051 6.0498 5.5787 5.4391 4.8879 4.7656
6.6720 6.9666 6.5113 6.7988 6.0727 6.3407 5.4596 5.7006 4.7835 4.9947
6.8176 6.6534 6.2051 5.5787 4.8879
8.4993 8.2947 7.7358 6.9549 6.0936
10 8.3176 8.1095 8.1173 7.9142 7.5704 7.3810 6.8062 6.6359 5.9633 5.8141

8.1289 8.4993 7.9332 8.2947 7.3987 7.7358 6.6518 6.9549 5.8281 6.0936
8.3176 8.1173 7.5704 6.8062 5.9633
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L/h=30
2.4732 2.4665 2.4464 2.4137 2.3603

o 24674 24603 24606 24536 24406 24336 24079 24011 23637 23569
24603 24732 24536 24665 24336 24464 24011 24137 23569  2.3693
2.4674 2.4606 2.4406 2.4079 2.3637

4.1022 4.0910 4.0577 4.0035 3.9208

03 40925 40808 40813 40697 40481 40366 39940 39826  3.9205  3.9094
40811 41022 40699 40910 40368  4.0577 39828  4.0035 39096  3.9298
4.0925 4.0813 4.0481 3.9940 3.9205

5.4412 5.4263 5.3821 5.3101 5.2124

, 54282 54128 54134 53980 53694 53541 52975 52824 52001 51853
54146 54412 53998 54263 53550 53821 52843 53101 51871 52124
5.4282 5.4134 5.3694 5.2975 5.2001

6.833 6.8151 6.7596 6.6693 6.5466

, 68176 67982 67989 6779 67436 67244 66534 66345 65311 65125
6.8011 68338 67825 68151 67273 67506  6.6373  6.6693 65153  6.5466
6.8176 6.7989 6.7436 6.6534 6.5311

8.3374 8.3147 8.2470 8.1366 7.9871

1o 83176 82930 82049 82713 82274 82040 81173 80942  7.9681  7.9454
82962 83374 82735 83147 82062 82470 80964 81366  7.9476  7.9871
8.3176 8.2049 8.2274 8.1173 7.9681

L/h=100

2.4679 2.4673 2.4654 2.4624 2.4582

o 24674 24667 24667 24661 24649 24643 24619 24613 24576 24570
24667 24679 24661 24673 24643 24654 24613 24624 24570  2.4582
2.4674 2.4667 2.4649 2.4619 2.4576

4.0934 4.0924 4.0894 4.0842 4.0773

03 40925 40914 40015 40005 40885 40874 40834 40823 40764 40753
40015 40934 40005 40924 40874  4.0894 40824 40842 40754 40773
4.0925 4.0915 4.0885 4.0834 4.0764

5.4294 5.4281 5.4241 5.4173 5.4080

| 54282 54268 54269 5425 54220 54215 54162 54148 54069 54055
54270 54294 54257 54281 54217 54241 54150 54173 54057  5.4080
5.4282 5.4269 5.4229 5.4162 5.4069

6.8191 6.8173 6.8123 6.8039 6.7922

, 68176 68150 68150 68141 68108 68090 68025 68007 67908 67890
6.8161 68191 68144 68173  6.8094 68123  6.8010 68039 67893  6.7922
6.8176 6.8159 6.8108 6.8025 6.7908

8.3194 8.3173 8.3111 8.3010 8.2867

1o 83176 83155 83155 83134 83004 83072 82992 82971 82849  8.2828
83157 83194 83136 83173 83075 83111 82972 83010 82830  8.2867
8.3176 8.3155 8.3094 8.2092 8.2849

6. Conclusions

This article investigated stability of functionally graded nanobeams exposed to the axial
compressive loads. To obtain this, a novel beam approach was re-formulated to present
governing equations. Nanoscale influences were evaluated by use of a non-classical elasticity
theory. Moreover, to calculate the numerical results the Navier’s approach was used. The
greatness outcomes proved that the Euler beam theory has not satisfactory results for
moderately thick and thick beams. On the other hand, although the impacts of transverse shear
strains has been taken into account by Timoshenko beam, the used shear correction factor
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deviates outcomes of this beam approach slightly. The appropriate amount of this factor for
nanostructures has not been already calculated and the used value cannot be appropriate at all.
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