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Abstract 

The authors are presenting a novel formulation based on the Differential Quadrature (DQ) method which is 

used to approximate derivatives and integrals. The resulting scheme has been termed strong and weak form 

finite elements (SFEM or WFEM), according to the numerical scheme employed in the computation. Such 

numerical methods are applied to solve some structural problems related to the mechanical behavior of plates 

and shells, made of isotropic or composite materials.  

The main differences between these two approaches rely on the initial formulation – which is strong or weak 

(variational) – and the implementation of the boundary conditions, that for the former include the continuity of 

stresses and displacements, whereas in the latter can consider the continuity of the displacements or both. 

The two methodologies consider also a mapping technique to transform an element of general shape described 

in Cartesian coordinates into the same element in the computational space. Such technique can be implemented 

by employing the classic Lagrangian-shaped elements with a fixed number of nodes along the element edges or 
blending functions which allow an “exact mapping” of the element. In particular, the authors are employing 

NURBS (Not-Uniform Rational B-Splines) for such nonlinear mapping in order to use the “exact” shape of CAD 

designs. 

Keywords: Structural analysis, Numerical methods, Strong formulation finite element method, Weak 

formulation finite element method, Differential and integral quadrature, Numerical stability and accuracy 

 

1. Introduction 

 

It is well-known that a physical phenomenon can be modeled by a system of differential 

equations, which are obtained once the proper hypotheses are introduced [1]-[4]. The solution 

of these complex differential equations cannot be reached analytically, thus a numerical 

method is needed for this purpose. This statement is especially true when a structural problem 

is taken into account, such as the vibrational or static behavior of laminated composite 

structures. 

With reference to the papers by Tornabene et al. [5][6], it should be noted that the numerical 

approaches that can be employed in these circumstances are categorized according to the 
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formulation. In general, the solution of problem governed by a set of differential equations 

can be achieved by solving the strong or the weak form of the equations in hand. The 

governing equations are changed directly into a discrete system if the strong formulation is 

considered, since a numerical technique is introduced to approximate the derivatives. To this 

aim, different techniques can be used, such as some spectral methods for instance [7]-[9]. 

Among them, the Differential Quadrature (DQ) method should be mentioned due to its 

versatility and accuracy features [10]-[13]. A more stable and reliable approach was 

developed by Shu [14], and it is known in the literature as Generalized Differential 

Quadrature (GDQ) method. In this paper, only the main aspects of the DQ and GDQ 

techniques are presented. For the sake of completeness, the reader can find a more complete 

treatise about these methods in the review paper by Tornabene et al. [5]. 

On the other hand, the main aim of solving the weak formulation is to obtain an equivalent 

form of the governing equations by introducing a weighted-integral statement, which allows 

to reduce (or weaken) the order of differentiability of the differential equations. For this 

purpose, a numerical method able to compute integrals must be used. In the present paper, the 

Generalized Integral Quadrature (GIQ) is introduced to this aim [5][14]. Nevertheless, it 

should be mentioned that different weak form-based methods can be employed, as illustrated 

in the book by Reddy [4]. For the sake of completeness, it should be recalled that the weak 

form of the governing equations is solved also in the well-known Finite Element (FE) method 

[4][15]. 

In general, many practical applications require that the reference domain in which the 

governing equations are written is subdivided into several subdomains (or finite elements), 

due to the presence of geometric and mechanical discontinuities. At this point, a peculiar 

mapping technique can be developed to deal with arbitrarily shaped elements. Different 

approaches can be introduced for this purpose [16][17]. Recently, the theoretical framework 

provided by the Isogeometric Analysis (IGA) appears to be one of the most exploited 

approaches to study geometries with arbitrary edges [18][19]. Indeed, the use of blending 

functions based on NURBS (Non-Uniform Rational B-Splines) curves facilitates the analysis 

of generic domains. Both the domain decomposition and the mapping procedure are broadly 

used in classic FE method. Nevertheless, the same processes can be employed also when the 

strong form of the governing equations is considered [20]-[25]. The authors employ the 

names Strong Formulation Finite Element Method (SFEM) and Weak Formulation Finite 

Element Method (WFEM) to classify two different approaches based on the strong and weak 

forms of the governing equations, respectively. 

In this paper, the accuracy, reliability and stability characteristics of SFEM and WFEM are 

discussed and compared by means of some numerical examples related to structural problems. 

A brief theoretical treatise is also presented for the sake of completeness. Further details 

concerning the structural models, as well as the governing equations, can be found in the 

works [26]-[30]. 

 

2. Numerical methods 

 

The main aspects of the numerical methods used in the computations are presented briefly in 

this section. In particular, the fundamentals of DQ are introduced firstly. Then, the 

corresponding technique used to approximate integrals is illustrated starting from the concepts 

employed for the numerical evaluation of derivatives. 
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Approximation of derivatives 

The derivative of a generic function can be approximated numerically by means of the DQ 

method. The key points of this technique are the evaluation of the weighting coefficients and 

the choice of a discrete distribution of grid points within the reference domain. Let us 

consider a one-dimensional function  f x  defined in the closed interval  ,a b . Such domain 

must be preventively discretized by placing 
NI  discrete grid points  ,kx a b , according to 

the following relation 

  k k

b a
x c a

d c



  


  (1) 

for 1, 2,..., Nk I , where  ,k c d   denotes the points of a generic distributions. The most 

typical grid employed in many engineering problems are listed in Table 1, assuming 

 1

1

k
k

N

r r

r r






  (2) 

where not specified. On the other hand, the basis polynomials required to evaluate the 

corresponding distribution will be indicated in the following. A more complete list of discrete 

grid distributions is presented in the books [31][32] and in the review paper by Tornabene et 

al. [5]. 

It should be recalled that a smooth function  f x  can be approximated by a set of basis 

functions  j x , for 1, 2,..., Nj I . From the mathematical point of view, one gets 

    
1

NI

j j

j

f x x


   (3) 

in which 
j  are unknown coefficients. By using a compact matrix form, Eq. (3) can be 

written as follows 

 f Aλ   (4) 

where f  represents the vector of the values that the function assumes in each grid point, 

whereas the vector λ  collects the terms 
j . On the other hand, A  is the coefficient matrix, 

whose elements are given by  ij j iA x , for , 1,2,..., Ni j I . Since the unknown parameters 

j  do not depend on x , the n -th order derivative of  f x  can be computed as 

 
   

1

N
nn I

j

jn n
j

d xd f x

dx dx






   (5) 

for 1, 2,..., 1Nn I  . Analogously, a compact matrix form can be conveniently used 

 
   n n
f A λ   (6) 

where 
 n

f  collects the values of the n -th order derivatives computed at each grid point. The 

coefficients of the matrix 
 n

A  are clearly given by  
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    

i

n

n j

ij n

x

d x
A

dx


   (7) 

for , 1,2,..., Ni j I . Having in mind Eq. (4), the unknown vector λ  can be computed as 

 1λ A f   (8) 

 

Table 1.  Grid point distributions. The symbol N  denotes the total number of points 

Unifor (Unif) Chebyshev-Gauss-Lobatto (Cheb-Gau-Lob) 

1
, 1,2,...,

1
k

k
k N

N



 


  cos , 1,2,..., , 1,1

1
k

N k
r k N r

N


 
    

 
 

Quadratic (Quad) Chebyshev I kind (Cheb I) 

2

2

1 1
2 , 1,2,...,

1 2

1 1 1
2 4 1, 1,..., 1,

1 1 2

k

k

k N
k

N

k k N
k N N

N N





   
   

  


     
              

 
 

 
2 1

cos , 1,2,..., , 1,1
2

k

N k
r k N r

N


  
     

 

 

Chebyshev II kind (Cheb II) Approximate Legendre (App Leg) 

 
1

cos , 1,2,..., , 1,1
1

k

N k
r k N r

N


  
    

 
 

 

 

2 3

4 31 1
1 cos ,

4 28 8

1,2,..., , 1,1

k

N k
r

NN N

k N r


   

          

  

 

Legendre-Gauss (Leg-Gau) Radau I kind (Rad I) 

     2

1roots of , 1,2,..., , 1,1 1k Nr rr L k N r     
      

 

1roots of  ,

1,2,..., , 1,1

1 N Nk r L r

k N

rr L

r





 

 

 
 

Chebyshev-Gauss (Cheb-Gau) Legendre-Gauss-Lobatto (Leg-Gau-Lob) 

 

 

 

1

2 1
1, 1, cos ,

2 2

2,3,..., 1, 1,1

N k

N k
r r r

N

k N r


  

     
  

   

      2

1roots of , 1,2,..., , 1 1 1 ,k Nr A rr k N r     

Hermite (Her) Laguerre (Lague) 

   1roots of , 1,2,..., ,k Nr H r k N r         1roots of , 1,2,..., , 0,k Nr G r k N r     

Chebyshev-Gauss-Radau (Cheb-Gau-Rad) Non uniform Ding (Ding) 

 
 

2
cos , 1,2,..., , 1,1

2 1
k

N k
r k N r

N


 
      

 
1 1

1 2 cos , 1,2,...,
2 4 2 1

k

k
k N

N

 


  
     

  
 

Legendre (Leg) Chebyshev III kind (Cheb III) 

   1roots of , 1,2,..., , 1,1k Nr L r k N r     
 

 
2 1

cos , 1,2,..., , 1,1
2 1

k

N k
r k N r

N


  
      

 

Chebyshev IV kind (Cheb IV) Lobatto (Lob) 

 
 

2 1
cos , 1,2,..., , 1,1

2 1
k

N k
r k N r

N


  
      

    1roots of , 1,2,..., , 1,  1k Nr A k Nr r     

Legendre-Gauss-Radau (Leg-Gau-Rad) Radau II kind (Rad II) 

     1roots of , 1,2,..., , 1,1N Nk L r L rr k N r      
      

 

1roots of  ,

1,2,..., , 1,1

1 N Nk rr L

k

r L r

N r



  

 
 

Jacobi (Jac) Jacobi-Gauss (Jac-Gau) 

     ,

1roots of , 1,2,..., 1,1k Nr J k N rr
 

            ,2

1roots of  , 1,2,..., , 1,1 1k N NrJrr k r
 

     
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Thus, Eq. (8) allows to write the following definition 

 
    1n n f A A f   (9) 

According to the differentiation matrix procedure provided by the DQ method, the n -th order 

derivatives are given by 

 
   n n
f D f   (10) 

in which 
 n

D  is the matrix that collects the so called weighting coefficients for the derivation. 

By comparing Eq. (9) and Eq. (10), it is evident that  

 
    1n n D A A   (11) 

Therefore, it should be noted that the differentiation matrix 
 n

D  can be computed as the 

matrix product between the matrix 
 n

A that collects the n -th order derivatives of the chosen 

basis functions at each discrete point of the domain and the inverse matrix of the operator A  

that includes the values that the basis functions assume in every grid point. For completeness 

purpose, some of the basis functions that can be used for this purpose are listed in Table 2. 

As highlighted in the review paper by Tornabene et al. [5], it is possible also to employ the 

well-known Radial Basis Functions (RBFs) for the functional approximation. Analogously, 

the same approximation can be achieved through the so-called Moving Least Squares (MLS) 

method [5]. For the sake of clarity, Eq. (10) assumes the following aspect 

 
     

1

N

i

n I
n

ij jn
j

x

d f x
D f x

dx 

   (12) 

for 1, 2,..., Ni I , where 
 n

ijD  denotes the elements collected in the differentiation matrix. It 

should be noted that Eq. (12) is analogous to the definition of numerical derivative provided 

by the Generalized Differential Quadrature (GDQ) method 

 
     

1

N

i

n I
n

ij jn
j

x

d f x
f x

dx




   (13) 

where 
 n

ij  are the weighting coefficients that can be collected in the corresponding matrix 

 n
ς , so that one gets 

    n n
f ς f   (14) 

Eq. (14) is equivalent to the definition shown in Eq. (10). The coefficients 
 n

ij  can be 

computed by means of the recursive expressions provided by Shu [5], whereas a matrix 

multiplication and an inversion of a matrix are required to evaluate 
 n

ijD . It should be 

highlighted that the matrix A  could become ill-conditioned if the number of grid points 
NI  is 

increased, since it appears to be similar to the well-known Vandermonde matrix. It is proven 

that this problem happens for 13NI  . It should be observed anyway that the number of 

discrete points is low when the reference domain is subdivided into finite elements, since the 

unknown field is well-approximated by using lower-order basis functions. However, the 

choice of particular basis functions such as Lagrange polynomials, Lagrange trigonometric 

polynomials, or the Sinc function, allows to overcome this issue since the coefficient matrix is 
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equal to the corresponding identity matrix (in other words, one gets A Ι ). Thus, when the 

solution is obtained by using a single element, the unknown field requires higher-order basis 

functions for its approximation. Consequently, the numerical problems related to the ill-

conditioned matrix can be avoided by choosing the aforementioned basis functions. 

 

Table 2.  Basis function employed for the functional approximation 

Lagrange polynomials Lagrange trigonometric polynomials 

 
 

     
 

         

1

1

1 1,

, , , 1, 2,...,

,

j j

j j

N N

k j j k

k k j k

r
l r r j N

r r L r

r r r r r r



  

     


    

L

L L

 

 
 

   

     

1

1

1 1,

, 0,2 , 1,2,...,

sin
2

sin , sin
2 2

j j

j

j

N N
j kk

j

k k j k

r
g r r j N

r r
S r

r rr r
r r

 

  

      
 
 

  
    

   
 

G

G G

 

Bernstein polynomials Lobatto polynomials 

 
 

   
 

 

1
1 !

1
1 ! !

         0,1 ,      1,2,...,

N jj

j j

N
B r r r

j N j

r j N





  

 

 

       1 , 1,1 , 1,2,...,j j j

d
A r L r r j N

dr
       

Exponential functions Monomial polynomials 

     1
, , , 1,2,...,

j r

j jE r e r j N


          1, , , 1,2,...,j

j jZ r r r j N        

Bessel polynomials Sinc functions 

   
 

 

 

1

1 1

0

1 !
1, ,

1 ! ! 2

        , ,      2,3,...,

j k

j j

k

j k r
P r P r

j k k

r j N

 





   
     

   

   

  
 

   
  

 

sin 1
Sinc

1

0,1 ,              1, 2,...,

j

j j j

j

N r r
S r

N r r

r j N






 
  

 

 

 

Fourier functions Boubaker polynomials 

   

 

 

1 1 1, cos for even
2

1
sin for odd

2

    0,2 ,              2,3,...,

j j

j j

j
F r F r r j

j
F r r j

r j N

 





 
     

 

 
   

 

 

 

   

   
 

 
    

1 1

1

1 2

0

1

1,    , , 2,3,...,

1 1 4
1

1

2 1 1 1
1

4

j
k j k

j j

k

j

Q r r j N

j k j k
Q r r

k j k

j
j











 





     

    
    

  

   
 

  

Jacobi Polynomials Legendre polynomials 

   
 

     
    

 

1
1

1 1,

11

1
1 1

2 1 ! 1 1

1,1 , 1,2,..., , , 1

j
j

j j

j j jj

d
J r r r

drj r r

r j N

  

 


 




   




   

  

    

  
 

 
  

 

1
1

1
2

1 1

1
1

2 1 !

1,1 1,2,...,

j
j

j

j j j j

d
L r r

j dr

r j N








 


  



  

 

Chebyshev polynomials (I kind) Chebyshev polynomials (II kind) 

        cos 1 arccos , 1,1 , 1,2,...,j jT r j r r j N         
  
  

 
sin arccos

, 1,1 , 1,2,...,
sin arccos

j j

j r
U r r j N

r
       

Chebyshev polynomials (III kind) Chebyshev polynomials (IV kind) 

 

   

 
 

2 1 arccos
cos

2
, 1,1 , 1,2,...,

arccos
cos

2

j j

j r

V r r j N
r



 
  
 

    
 
  
 

  

   

 
 

2 1 arccos
sin

2
, 1,1 , 1,2,...,

arccos
sin

2

j j

j r

W r r j N
r



 
  
 

    
 
  
 

 

Laguerre polynomials Hermite polynomials 

 
 

   
1

1

1

1
, 0, , 1,2,...,

1 !

j
j r

j j r j

d
G r r e r j N

j e dr



 

 
    


        

2 2
1

1

1
1 , , , 1,2,...,

j
j r r

j j j

d
H r e e r j N

dr



 


        
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For the sake of completeness, it should be noted that the following linear coordinate 

transformation is required to define the weighting coefficients in the physical domain 

    1

1

n

n nN
ij ij

N

r r

x x
 

 
  

 
  (15) 

for , 1, 2, , Ni j I  and 1,2, , 1Nn I  , where 
 n

ij  are the weighting coefficients related to 

the physical domain, whereas 
 n

ij  are the ones computed in the definition domain. The values 

of 1, Nr r  can be found using the expressions shown in Table 1. 

This approach can be easily extended to two-dimensional domains, such as the ones that 

characterize the structural problem of plates and shells. Firstly, the reference domain must be 

discretized by placing ,N MI I  grid points along the two principal directions, respectively. 

Then, the same procedure illustrated above should be used to obtain the weighting 

coefficients for the numerical derivatives along both the main coordinates of the domain ,x y . 

In this circumstance, a two-dimensional function  ,f x y  is considered. In order to facilitate 

the implementation of the technique in hand, the values that this function assumes in each 

discrete point of the domain can be conveniently collected according to the following scheme 

 

     

   

   

1 1 2 1 11 2

first column

1 2 21 2

second column

1
1

last column

, , ,

, ,

, ,

N
N

NN N

M N M
N M N N M

I
I

II I

T

I I I
I I I I I

f x y f x y f x y

f x y f x y

f x y f x y



   







f

  (16) 

in which  ,k i j k
f f x y , for 1, 2,..., Ni I  and 1,2,..., Mj I . For the sake of clarity, this 

aspect is depicted graphically in the scheme of Figure 1. 

 
Fig. 1.  DQ implementation for a two-dimensional domain 

 

The weighting coefficients can be computed by using the Kronecker product   as follows 
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  

   

 

M MN M N M N N

n n

x x
I II I I I I I   

 C I D   (17) 

  

   

 

N NN M N M M M

m m

y y
I II I I I I I    

 C D I   (18) 

  

   

   

N NN M N M M M

n m m n

xy y x
I II I I I I I



   

 C D D   (19) 

in which I  represents the identity matrix, whereas 
   

,
n m

x yD D  collect the weighting 

coefficients along the two principal coordinates, which can be evaluated as shown above. The 

size of every operator is indicated under the corresponding matrix for the sake of 

completeness. Once the weighting coefficients related to the current scheme are computed and 

collected in the corresponding matrices 
     

, ,
n m n m

x y xy


C C C , the derivatives of the considered 

function are given by the following matrix products 

    n n

x xf C f   (20) 

 
   m m

y yf C f   (21) 

 
   n m n m

xy xy

 
f C f   (22) 

In particular,  n

xf  collects the n -th order derivatives with respect to x , 
 m

yf  is the vector of 

the m -th order derivatives with respect to y , whereas 
 n m

xy


f  represents  n m -th order 

mixed derivatives. The size of all these vectors, as well as of f , is given by   1N MI I  . 

At this point, it should be mentioned that the present approach is used to obtain and solve the 

strong form of the governing equations. If a subdivision of the reference domain into finite 

elements is required, the technique is termed Strong Formulation Finite Element Method 

(SFEM). It is clear that the vector f  denotes the unknown field of the partial differential 

equations of the fundamental system, which is transformed directly into a system of discrete 

equations by means of the DQ method. 

Approximation of integrals 

Starting from the ideas and definitions illustrated for the numerical evaluation of derivatives, 

a numerical scheme for the computation of integrals can be developed. In this section, the 

main aspects of this integral quadrature are presented briefly. Since the Lagrange polynomials 

are used as basis functions for the functional approximation, the technique at issue is known 

in the literature as Generalized Integral Quadrature (GIQ). Nevertheless, it should be recalled 

that different basis functions can be chosen for the same purpose. 

Let us consider the same one-dimensional function  f x  defined in the closed interval  ,a b  

introduced in the previous section. As shown in Eq. (1), the reference domain is discretized so 

that one gets  ,kx a b . All the grid distributions listed in Table 1 could be employed. By 

definition, the integral of  f x  within the closed interval ,i jx x   , with  , ,i jx x a b , can be 

approximated as follows  

    
1

j
N

i

x I
ij

k k

kx

f x dx w f x


   (23) 
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where 
NI  denotes the total number of discrete points, whereas ij

kw  are the weighting 

coefficients for the integration. It should be noted that the numerical integration in Eq. (23) 

requires to consider all the sampling points of the domain independently from the integration 

limits. Eq. (23) becomes a conventional integral for ix a  and 
jx b . In order to evaluate 

the weighting coefficients, the following quantities must be introduced 

 

   

   

1 1

1 1

for

1
for

i
ij ij

j

ij ii

i

x c
i j

x c

i j
x c

 

 


 



  


  (24) 

for 1, 2,..., Ni I . It is clear that 
 1

ij  stands for the weighting coefficients for the first-order 

derivatives, computable through the recursive formulae provided by Shu as explained in the 

previous section. The arbitrary constant c  should be set equal to 1010c b    to guarantee the 

accuracy and stability of the numerical solution. The coefficients introduced in Eq. (24) can 

be collected in the corresponding matrix  1
ς  of size 

N NI I . At this point, this last matrix 

must be inverted as follows to obtain the matrix of the weighting coefficients for the 

integration 

   
1

1


W ς   (25) 

A generic term of W  is specified by the notation ijw , for , 1,2,..., Ni j I . Finally, the 

weighting coefficients ij

kw  needed in Eq. (23) are given by 

 ij

k jk ikw w w    (26) 

for 1, 2,..., Nk I . These 
NI  coefficients can be conveniently collected in a row vector 

xW , 

whose size is 1 NI . In compact matrix form, the numerical integral I  is computed as a 

vector product 

 xI  W f   (27) 

If the integration limits are set equal to ix a  and 
jx b , or in other words 

1ix x  and 

Nj Ix x , the numerical integration can be performed by using the weighting coefficients 

1 NI

kw , which are defined as follows 

 
1

1
N

N

I

k I k kw w w    (28) 

A transformation of these weighting coefficients must be performed to switch from the 

reference interval  ,   to a generic one  ,a b . The weighting coefficients 
1 NI

kw  in the 

physical interval  ,a b  are given by  

 
1 1N NI I

k k

b a
w w

 





  (29) 
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where 1 NI

kw  represents the weighting coefficients related to the shifted interval  ,  . It is 

important to underline that this approach can be applied without any restriction on the grid 

point distributions employed to discretize the reference domain. 

As shown above, the two-dimensional counterpart can be easily deducted. Let us consider a 

generic smooth function  ,f x y  defined in a two-dimensional domain, where the main 

coordinates ,x y  are given by  ,x a b  and  ,y c d . The numerical integral performed in 

the whole domain is defined as follows 

    1 1

1 1

, ,
N M

N M

d b I I
I I

i j i j

i jc a

f x y dxdy w w f x y
 

   (30) 

in which the weighting coefficients 
1 1

,N MI I

i jw w  can be evaluated by applying the same 

procedure just illustrated along the two principal coordinates. In order to facilitate the 

implementation process, these coefficients can be collected in the corresponding vectors 

denoted by ,x yW W , respectively. Even in this circumstance, the same scheme used before to 

order the grid points should be used (Figure 1). By using the Kronecker product, the vector of 

the weighting coefficients for the two-dimensional integration is obtained 

 
  11 1 NN M M

xy y x
II I I   

 W W W   (31) 

A simple matrix product is required to evaluate the numerical integration shown in Eq. (30). 

Analogously to the one-dimensional scheme, the integral I  is given by 

 
xyI W f   (32) 

where f  assumes the meaning shown in Eq. (16). The current approach is employed to obtain 

and solve the weak form of the governing equations. When the reference domain is 

decomposed into finite elements, the technique in hand is named Weak Formulation Finite 

Element Method (WFEM). 

 

3. Applications 

 

In this section, some applications related to the structural analysis of plates and shells are 

presented. Both the strong and weak formulations are employed and the numerical results are 

obtained by using different basis functions and grid distributions. 

Isotropic plates 

The numerical tests shown in this paragraph are related to the convergence analysis of simply-

supported plates in terms of the first circular frequency 
1 . The reference solution 

1ex  for this 

structure is shown in the review paper by Tornabene et al. [5]. The square plates of side 

1mL   and thickness 0.1mh   are made of isotropic material ( 70GPaE  , 0.3  , 
32707 kg m  ). In the first applications, the two formulations are employed by varying 

grid distributions and basis functions in the theoretical framework provided by the Reissner-

Mindlin theory, increasing the number of grid points 
N MI I N  . The structural model is 

composed by a sole element due to its regular shape. Figure 2 and Figure 3 show the 

convergence analyses for the weak and strong formulations, respectively. It is easy to note 
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that some grid distributions do not provide accurate results. This aspect is even more evident 

for the strong formulation (Figure 3). In general, the solutions converge by using a reduced 

number of points ( 11 15N   ). On the other hand, the MLS method gives inaccurate results, 

especially for the weak form. For this technique, the Gaussian quadric function is used as 

basis function. 

 

  
a) b) 

  
c) d) 

  
e) f) 

  
g) h) 

Fig. 2.  Relative error for the first frequency of a simply-supported square plate. The weak formulation 
is employed considering different basis functions: a) Bernstein polynomials; b) Bessel polynomials; c) 

Boubaker polynomials; d) Chebyshev (I kind) polynomials; e) Exponential functions; f) Lagrange 

polynomials; g) Fourier basis functions; h) MLS method (Gaussian quadric basis functions) 
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A second set of convergence analyses is performed considering an isotropic rectangular plate 

( 2m, 1.5m, 0.1mx yL L h   ) characterized by the same mechanical properties and 

boundary conditions of the previous tests. 

  
a) b) 

  
c) d) 

  
e) f) 

  

g) h) 

Fig. 3.  Relative error for the first frequency of a simply-supported square plate. The strong 

formulation is employed considering different basis functions: a) Bernstein polynomials; b) 

Bessel polynomials; c) Boubaker polynomials; d) Chebyshev (I kind) polynomials; e) 

Exponential functions; f) Lagrange polynomials; g) Fourier basis functions; h) MLS method 

(Gaussian quadric basis functions) 
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If 
reff  denotes the reference solution in term of natural frequency, the relative error is 

 1n

ref

f

f
     (33) 

where n  stands for the considered vibration mode. For the sake of completeness, the Navier 

type solution can be found in [5]. The same analyses are performed by means of two finite 

element commercial codes (Strand7 and Abaqus) by using several kinds of plate elements, as 

specified in Table 3. A complete description of these elements can be found in the 

corresponding documentation of the software. 

 

Table 3.  Finite elements available in the commercial codes used in the computations 

Strand7 

Quadrangular Triangular 

Quad4 (4 nodes) Tri3 (3 nodes) 

Quad8 (8 nodes) Tri6 (6 nodes) 

Quad9 (9 nodes) - 

Abaqus 

General purpose Thin structures Thick structures 

S4 (quadrangular, 4 nodes) S8R5 (quadrangular, 8 nodes) S8R (quadrangular, 8 nodes) 

S4R (quadrangular, 4 nodes) STRI65 (triangular, 6 nodes) - 

S3 (triangular, 3 nodes) - - 

As far as the present approaches are concerned, the strong formulation is used with the Cheb-

Gau-Lob (CGL) grid, whereas the Leg-Gau-Lob (LGL) is employed for the weak form. The 

Lagrange polynomials are employed for both the formulations. In this example, the reference 

domain is divided into elements and the notations SFEMj  and WFEMj  are introduced. The 

symbol j  stands for the number of elements ( 1,2,4,8,16j  ) used for the computation. The 

results are shown in Figure 4 for the first three mode shapes of the isotropic rectangular plate, 

where the relative error is given as a function of the degrees of freedom of the problem 

( DOFS ). It can be observed that the present approaches show a rapid convergence if 

compared to the commercial codes, independently from the number of finite elements. Thus, 

the current approaches require a reduced number of degrees of freedom to obtain accurate 

results. The strong and the weak based methodologies are characterized by the same level of 

accuracy, when the corresponding structural models are considered. It is important to note that 

both the SFEM and WFEM are able to capture the reference solutions and the machine 

epsilon is reached. This aspect is highlighted by the horizontal lines in the graphs of Figure 4. 

Finally, it should be specified that the theoretical model is provided by the Reissner-Mindlin 

theory [25]. 

Laminated plates 

The same structure is considered in this paragraph to perform the convergence analyses for a 

laminated plate, whose stacking sequence is given by  90 / 0 / 90 / 0 / 90 . The orthotropic 

mechanical properties are the following ones 

 
1

1 2 3 12 13 2

3

23 2 12 13 23

137.9GPa, , G 0.6 ,
40

0.6 , 0.25, 1450kg m

E
E E E G E

G E    

    

    

  (34) 
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As shown above, the results are given in terms of the relative error (33) related to the Navier 

solution specified in [5], for the Reissner-Mindlin theory. The notations and considerations of 

these tests are the same of the previous application. The convergence graphs are depicted in 

Figure 5. 

 
1st mode 

 
2nd mode 

 
3rd mode 

Fig. 4.  Relative error for the first three natural frequencies of a simply-supported isotropic 

rectangular plate increasing the number of degrees of freedom (DOFS). Both the strong and 

weak formulations are employed by dividing the domain into finite elements. The present 

solutions are compared with the ones obtained by different models obtained through several 

plate elements provided by two finite element commercial codes. 
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It should be noted that the machine epsilon is reached in each model for the present solution. 

On the other hand, the accuracy of the commercial codes is decreased if compared to the 

corresponding isotropic case. 

 

 
1st mode 

 
2nd mode 

 
3rd mode 

Fig. 5.  Relative error for the first three natural frequencies of a simply-supported laminated 

rectangular plate increasing the number of degrees of freedom (DOFS). Both the strong and 

weak formulations are employed by dividing the domain into finite elements. The present 

solutions are compared with the ones obtained by different models obtained through several 

plate elements provided by two finite element commercial codes. 
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In the applications just presented there is no need of a mapping procedure, since the domain 

has a regular shape. In the following, a fully clamped circular plate of radius 1mR   and 

thickness h  is analyzed. The lamination scheme is given by  30 / 45  and the two layers have 

the properties shown in (34) and the same thickness. The convergence analyses are shown in 

Figure 6 for two ratios R h  to deal with thick and thin structures, respectively. 

 

 
a) 10R h   

 
b) 100R h   

Fig. 6.  First natural frequency for a fully clamped laminated circular plate increasing the number of 

degrees of freedom (DOFS), for two different thickness values: a) R h = 10 ; b) R h = 100  

 

As shown above, several kinds of plate elements are considered when the solutions are 

obtained by means of the finite element commercial codes. As far as the present approach is 

concerned, only the strong formulation is solved by using different element configurations, as 

specified in the legend of the corresponding graphs, where the number of nodes required for 

the mapping of the curved edges of the structure is indicated too. An isogeometric mapping 

based on NURBS curves is also implemented and compared with the other results. Only for 

the thicker case, a three-dimensional finite element solution (achieved by means of Strand7 

and Abaqus) is computed and taken as a reference. These models are obtained through brick 

elements made of 20 nodes, named Hexa20 and C3D20 respectively. Both the SFEM and 

NURBS graphs tend to this solution with a reduced number of degrees of freedom. On the 

other hand, some types of elements provide convergence plots that are considerably detached 

from the reference ones, since they are not suitable to deal with this particular problem. 

Indeed, a similar tendency is achieved by means of each element for the thin plate. Finally, it 
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should be specified that the solutions are obtained in the framework of the Reissner-Mindlin 

theory. 

Laminated shells 

The last example is focused on the free vibration analysis of a doubly-curved laminated 

translational shell made of two orthotropic layers of equal thickness, whose geometry is 

widely described in the paper by Tornabene et al. [26]. The stacking sequence is given by 

 30 / 45 , and their mechanical properties are the following ones 

 
1 2 3 12 13

3

23 12 13 23

137.9GPa, 8.96GPa, G 7.1GPa,

6.21GPa, 0.3, 0.49, 1450kg m

E E E G

G    

    

    
  (35) 

The overall thickness is assumed as 0.1mh  . In this case, the first ten natural frequencies 

are obtained by solving only the weak formulation of the governing equations. A unified 

formulation is used to deal with higher-order shear deformation theories, as illustrated in the 

paper [30], where the reader can find a complete treatise about these structural models, as well 

as the nomenclature to denote them. The Leg-Gau-Lob grid distribution is employed by 

setting 30NI   and 60MI   as number of discrete points along the two principal directions. 

The first ten natural frequencies are presented in Table 4, together with the reference solution 

obtained by Abaqus (three-dimensional finite element model). All the numerical solutions are 

in good agreement with the reference one. For the sake of completeness, the first three mode 

shapes are depicted in Figure 7, where it is easy to note also the adopted boundary conditions. 

In particular, only one of the two external edges is fully clamped, whereas the other one is 

free. 

 

Table 4.  First ten frequencies for a doubly-curved laminated panel 

Mode 

[Hz] 
FSDT  TSDT  ED1  ED2  ED3  

3D FEM 

Abaqus 

1f  21.808 21.821 22.134 21.798 21.826 21.811 

2f  22.323 22.347 22.388 22.186 22.207 22.205 

3f  22.576 22.589 22.883 22.557 22.584 22.566 

4f  33.055 33.089 33.013 32.824 32.857 32.854 

5f  43.251 43.287 43.622 43.053 43.109 43.085 

6f  44.870 44.874 45.932 44.957 45.027 44.986 

7f  45.641 45.641 46.774 45.754 45.832 45.783 

8f  52.459 52.489 52.837 52.251 52.308 52.263 

9f  54.176 54.186 54.694 54.570 54.571 54.561 

10f  64.235 64.258 64.290 64.001 64.039 64.006 
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th
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Fig. 7.  First six mode shapes for a doubly-curved laminated shell of translation 

 

 

4. Conclusions 

 

The authors have presented two numerical approaches based on the DQ method to 

approximate derivatives and integrals, respectively. These techniques have been applied to 

solve some structural problems related to the mechanical behavior of plates and shells made 

of isotropic and composite materials. In particular, the accuracy and stability features of a 

strong formulation (SFEM) and a weak formulation (WFEM) have been discussed by means 

of some numerical analyses. Several basis polynomials for the functional approximation and 

different discrete grid distributions have been tested and compared. For this purpose, some 

convergence analyses have been performed by increasing the number of sampling points 

within the elements, for both a single element domain and a multi-element domain. The 

present solutions have been compared also with the results obtained through two commercial 

codes. These finite element models have been achieved by using several kinds of plate 

elements available in the software libraries. In general, the present methodologies have 

proven to be more accurate and characterized by a faster convergence ratio than the 

commercial codes. 

Acknowledgements 

The research topic is one of the subjects of the Centre of Study and Research for the 

Identification of Materials and Structures (CIMEST)-“M. Capurso” of the University of 

Bologna (Italy). 

References 

[1] Oden, J.T., and Reddy, J.N., An introduction to the mathematical theory of finite 

elements, John Wiley & Sons, 1976. 



F. Tornabene, N. Fantuzzi, and M. Bacciocchi 

19 

 

[2] Ochoa, O.O. and Reddy, J.N., Finite Element Analysis of Composite Laminates, 

Springer, 1992. 

[3] Zienkiewicz, O.C. and Taylor R.L., The Finite Element Method for Solid and Structural 

Mechanics, 6
th
 edition, Elsevier, 2005. 

[4] Reddy, J.N., An introduction to the finite element method, 3
rd

 edition, McGraw-Hill, 

2006. 

[5] Tornabene, F., Fantuzzi, N., Ubertini, F. and Viola, E., Strong Formulation Finite 

Element Method Based on Differential Quadrature: A Survey, Applied Mechanics 

Reviews, 67, 020801-1-55, 2015. 

[6] Tornabene, F., Fantuzzi, N., and Bacciocchi, M., The Strong Formulation Finite 

Element Method: Stability and Accuracy, Fracture and Structural Integrity, 29, 251-

265, 2014. 

[7] Gottlieb, D., and Orszag, S.A., Numerical Analysis of Spectral Methods: Theory and 

Applications, CBMS-NSF Regional Conference Series in Applied Mathematics., SIAM, 

1977. 

[8] Boyd, J.P., Chebyshev and Fourier Spectral Methods, Dover Publications, 2001. 

[9] Canuto, C., Hussaini, M.Y., Quarteroni, A., and Zang, T.A., Spectral Method. 

Fundamentals in Single Domains, Springer, 2006. 

[10] Bellman, R., and Casti, J., Differential quadrature and long-term integration, Journal of 

Mathematical Analysis and Applications, 34, 235-238, 1971. 

[11] Bert, C.W., and Malik, M., Differential quadrature method in computational mechanics, 

Applied Mechanics Reviews, 49, 1-27, 1996. 

[12] Quan, J.R., and Chang, C.T., New insights in solving distributed system equations by 

the quadrature method - I. Analysis, Computers & Chemical Engineering, 13, 779-788, 

1989. 

[13] Striz, A.G., Chen, W.L., and Bert, C.W., Static analysis of structures by the quadrature 

element method (QEM), International Journal of Solids and Structures, 31, 2807-2818, 

1994. 

[14] Shu, C.,  Differential Quadrature and Its Application in Engineering, Springer, 2000. 

[15] Reddy, J.N., Mechanics of Laminated Composites Plates and Shells, 2
nd

 edition, CRC 

Press, New York, 2004. 

[16] Chen, C.-N., Discrete Element Analysis Methods of Generic Differential Quadratures, 

Springer, 2006. 



F. Tornabene, N. Fantuzzi, and M. Bacciocchi 

20 

 

[17] Zong, Z., and Zhang, Y.Y., Advanced Differential Quadrature Methods, CRC Press, 

2009. 

[18] Cottrell, J.A., Hughes, T.J.R. and Bazilevs, Y., Isogeometric Analysis. Toward 

Integration of CAD and FEA, John Wiley & Sons, 2009. 

[19] Reali, A., An isogeometric analysis approach for the study of structural vibrations, 

Journal of Earthquake Engineering, 10, 1-30, 2006. 

[20] Tornabene, F., Fantuzzi, N. and Bacciocchi M., The GDQ Method for the Free 

Vibration Analysis of Arbitrarily Shaped Laminated Composite Shells Using a 

NURBS-Based Isogeometric Approach, Composite Structures, 154, 190-218, 2016. 

[21] Fantuzzi, N. and Tornabene F., Strong Formulation Isogeometric Analysis (SFIGA) for 

Laminated Composite Arbitrarily Shaped Plates, Composites Part B Engineering 96, 

173-203, 2016. 

[22] Viola, E., Tornabene, F. and Fantuzzi N., Generalized Differential Quadrature Finite 

Element Method for Cracked Composite Structures of Arbitrary Shape, Composite 

Structures, 106, 815-834, 2013. 

[23] Fantuzzi, N., Bacciocchi, M., Tornabene, F., Viola, E. and Ferreira, A.J.M., Radial 

Basis Functions Based on Differential Quadrature Method for the Free Vibration of 

Laminated Composite Arbitrary Shaped Plates, Composites Part B Engineering 78, 65-

78, 2015. 

[24] Tornabene, F., Fantuzzi, N., Bacciocchi, M., Neves, A.M.A. and Ferreira, A.J.M., 

MLSDQ Based on RBFs for the Free Vibrations of Laminated Composite Doubly-

Curved Shells, Composites Part B: Engineering 99, 30-47, 2016. 

[25] Fantuzzi, N., Tornabene, F., Bacciocchi, M., Neves, A.M.A. and A.J.M. Ferreira, 

Stability and Accuracy of Three Fourier Expansion-Based Strong Form Finite Elements 

for the Free Vibration Analysis of Laminated Composite Plates, International Journal 

for Numerical Methods in Engineering (in press), 2017. 

[26] Tornabene, F., Fantuzzi, N. and Bacciocchi, M., The local GDQ method applied to 

general higher-order theories of doubly-curved laminated composite shells and panels: 

The free vibration analysis, Composite Structures, 116, 637-660, 2014. 

[27] Tornabene, F., Brischetto, S., Fantuzzi, N., and Bacciocchi M., Boundary Conditions in 

2D Numerical and 3D Exact Models for Cylindrical Bending Analysis of Functionally 

Graded Structures, Shock and Vibration Vol. 2016, Article ID 2373862, 1-17, 2016. 



F. Tornabene, N. Fantuzzi, and M. Bacciocchi 

21 

 

[28] Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Reddy J.N., An Equivalent Layer-Wise 

Approach for the Free Vibration Analysis of Thick and Thin Laminated Sandwich 

Shells, Applied Sciences, 7, 17, 1-34, 2017. 

[29] Brischetto, S., Tornabene, F., Fantuzzi, N. and Bacciocchi, M., Interpretation of 

Boundary Conditions in the Analytical and Numerical Shell Solutions for Mode 

Analysis of Multilayered Structures, International Journal of Mechanical Sciences, 122, 

18-28, 2017. 

[30] Tornabene, F., Fantuzzi, N., Bacciocchi, M., Viola, E. and Reddy J.N., A Numerical 

Investigation on the Natural Frequencies of FGM Sandwich Shells with Variable 

Thickness by the Local Generalized Differential Quadrature Method, Applied Sciences, 

7, 131, 1-39, 2017. 

[31] Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E., Laminated Composite 

Doubly-Curved Shell Structures. Differential Geometry. Higher-Order Structural 

Theories, Esculapio, 2016. 

[32] Tornabene, F., Fantuzzi, N., Bacciocchi, M. and Viola, E., Laminated Composite 

Doubly-Curved Shell Structures. Differential and Integral Quadrature. Strong 

Formulation Finite Element Method, Esculapio, 2016. 


