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Abstract

In the present research, vibration and instability of axially moving sandwich plate made of soft core and composite face
sheets under initial tension is investigated. Single-walled carbon nano-tubes (SWCNTSs) are selected as a reinforcement
of composite face sheets inside Poly methyl methacrylate (PMMA) matrix. Higher order shear deformation theory
(HSDT) is utilized due to its accuracy of polynomial functions than other plate theories. Based on extended rule of
mixture, the structural properties of composite face sheets are taken into consideration. Motion equations are obtained
by means of Hamilton's principle and solved analytically. Influences of various parameters such as axially moving speed,
volume fraction of CNTSs, pre-tension, thickness and aspect ratio of sandwich plate on the vibration characteristics of
moving system are discussed in details. The results indicated that the critical speed of moving sandwich plate is strongly
dependent on the volume fraction of CNTs. Therefore, the critical speed of moving sandwich plate can be improved by
adding appropriate values of CNTs. The results of this investigation can be used in design and manufacturing of marine
vessels and aircrafts.
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1. Introduction

The use of sandwich structures in the world is increasingly growing. In today's modern engineering,
sandwich structures are being used successfully for a variety of applications such as aircraft, wind
turbine blades, spacecraft, train and car structures, boat/ship hulls boat/ship superstructures and many
others. This is due to the excellent mechanical properties of these structures (High strength to weight
ratio, high resistance to impact, flexibility and etc.). Most of sandwich structures are composed of
three layers: the top layer, middle layer that is called the core and the bottom layer. The core is less
stiff compared to other two-layer. Hence, selecting the appropriate material for the core and the other
layer is a significant for optimum design of sandwich structures. Carbon nanotube-reinforced
composite can be an excellent option for the top and bottom layers due to the high stiffness and the
other supreme properties. In this regard, study on vibration and instability of sandwich structures
which are reinforced by carbon fibers have been conducted by many researchers that some of them
are presented below.

Thostenson and Chou [1] have modelled the elastic properties of carbon nanotube-reinforced
composite. Investigation of the structure/size influence of carbon nanotubes on the elastic properties
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of nanotube-based composites is the main objective of their research. Zhou et al. [2] analyzed the
static and free vibration of carbon nanotube-reinforced composite plates using finite element method
with first order shear deformation plate theory (FSDT). They have studied on the influences of the
volume fractions of carbon nanotubes and the edge-to-thickness ratios on the bending responses,
natural frequencies and mode shapes of the plates. Also, Lei et al. [3] have done similar work before,
but they used the element free kP-Ritz method in thermal environment. Bending behavior of
functionally graded carbon nanotube reinforced composite (FG-CNTRC) plate embedded in thin
piezoelectric layers subjected to mechanical uniform load is investigated by Alibeigloo [4]. He
applied simply supported boundary conditions on plate and used three-dimensional elasticity theory
to analyze bending behavior of composite plate.

In recent years, with the advance of industry, there was a need for structures with multiple
capabilities simultaneously. One of the requirements was answered by the discovery of sandwich
structures. Thus, researchers have been working in this field. Nayak et al. [5] investigated free
vibration analysis of composite sandwich plates based on Reddy’s higher-order theory. Using this
theory that they have provided, it can be calculated the natural frequencies of isotropic, orthotropic,
and layered anisotropic composite and sandwich plates. Utilizing radial basis collocation function,
Ferreira et al. [6] analyzed the static, buckling and vibration responses of the plate. Khalili and
Mohammadi [7] used improved high-order sandwich plate to analyze the free vibration of sandwich
plates with FG face sheets. The material properties of FG face sheets and core are considered to be
temperature-dependent by a third-order function of temperature. Recently, Sahoo and Singh [8]
proposed a new trigonometric zigzag theory to analyze the static analysis of laminated composite and
sandwich plates. They assumed shear strain shape function for non-linear distribution of in-plane
displacement across the thickness. Thai et al. [9] presented a new first-order shear deformation
theory for functionally graded sandwich plates composed of isotropic core and functionally graded
face sheets. They approved that the presented theory is accurate in predicting the bending, buckling
and free vibration responses of FG sandwich plates. In another work, Plagianakos and Papadopoulos
[10] presented coupled higher-order layerwise piezoelectric laminate mechanics. Their developed
model was applicable to predict the static electromechanical response of composite and sandwich
composite plates subjected to static mechanical loads and/or electric voltages. Natarajan et al. [11]
have attempted to achieve an efficient solution for the bending and free vibration analysis of
sandwich plates with CNT reinforced composite face sheets. For this purpose, they have used
QUAD-8 shear flexible element developed based on higher-order structural theory. This theory
considered the possible discontinuity in slope at the interfaces layers, the realistic variation of the
displacements through the thickness, and the thickness stretch effects on the transverse deflection.
Kheirikhah et al. [12] carried out biaxial buckling analysis of soft-core composite sandwich plates. In
this way, they employed third-order plate theory for face sheets and quadratic and cubic functions for
transverse and in-plane displacements of the core, respectively. Moreover, analytical solution has
been presented for sandwich plates with simply supported boundary conditions under biaxial in-
plane compressive loads using Navier’s solution.

Axially moving beams and plates have attracted many authors. The geometrically nonlinear
dynamics and stability of an axially moving plate is presented by Ghayesh et al. [13]. In their study,
plate is placed under an out-of-plane incitement load and the frequency-response curves of the
system are plotted. Also, Dong Yang et al. [14] have been working on the previous thread. To solve
the differential equations governing the problem, they have used both the Galerkin method and
differential quadrature method. In the case of free vibration analysis of axially moving viscoelastic
plates, Hatami et al. [15] and Marynowski [16] have studied. However, each of them has used
different models for their work. Marynowski and Grabski [17] have investigated dynamic analysis of
an axially moving plate subjected to thermal loading using the extended Galerkin method the. In
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addition, they have been examined the effects of transport speed, the thermal critical loading and
axial tension on dynamic behavior of axially moving aluminum plate.

Despite mentioned researches, vibration and instability analysis of axially moving sandwich plate
under initial tension using HSDT is a novel topic that cannot be found in literature. To the best of
authors’ knowledge, for the first time, analysis of axially moving sandwich plate with CNT face
sheets is developed in this paper. Material properties of composite plate are obtained based on
extended rule of mixture. Motions equations are obtained based on energy method and solved by
means of analytical approach. Influences of various parameters such as moving speed, volume
fraction of CNTs, pre-tension load, thickness and aspect ratio on instability and critical speed of
moving composite sandwich plate are discussed in details. To verify the presented method, the
natural frequencies for stationary sandwich plate have been compared with previous researches. The
result of this work can be useful to control and improve the performance of axially moving devices
which are employed in military equipment.

2. Potential energies of axially moving sandwich plate

Consider a rectangular sandwich plate with length (a), width (b) and thickness (h =h' +h® +h")
which is shown in Fig.1. The top and bottom layers are made of carbon nanotube-reinforced
composite plate. The carbon nanotube is distributed uniformly in the x direction. The Cartesian
coordinate system is selected for this problem. x and y axes are located in the mid-plane and z axis
located along the thickness direction. Sandwich plate is moving along the x direction with the
constant velocity V.

CNT (Fiber)

ht Top Face Sheet
he PMMA (Matrix)
hb t

Bottom Face Sheet

Fig. 1. Schematic figure of axially moving sandwich plate with CNT reinforced face sheets.
The following assumptions have been used to derive motion equations [18 and 19]:
e The core thickness is larger and softer than the top and bottom layer.

e The core is fully bonded with the top and bottom layers. Thus, core and the top layer have the
same displacement in (z =+h®/2) as well as the core and the bottom layer in (z=-h"/2),

e No slipping happens at the interfaces between the three layers of the sandwich plate.

Because the core is made of a soft material, to increase the accuracy of results a higher-order theory
will be used. According to this theory, the displacement field of the sandwich plate can be expressed
as [20]:
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U(x, ¥, 2, 1) = Uy (X, Y, 0)+2U, (X, Y, D)+Z°u, (X, y, )+Z°u,(x, y, 1),
V(X, Y, Z, 1) = Vo (X, Y, D+2v, (X, Y, D+Z°V, (X, Y, D420V, (X, Y, ), )
W(X, Y, Z, 1) =W, (X, Y, t)+2w, (X, Y, t)+2°W, (X, Y, t),

in which, U, v, and w, (j=0,123and k =0,1,2) are the unknowns of the displacement
components of the sandwich plate. In this manner, eleven displacements are unknowns.

The linear von-Karman strain-displacement relations can be defined as:

i _ 2 3
S — u,x - u0,x +Zul,x tz u2,x tz u3,x'

i _ _ 2 3
g, = V,y = Vo,y +ZV1‘y +Z szy +Z°V

yy 3y?

&, =W, =W, +2ZW,,
el =l(v +U )=lv0 +lzvl +lzzv2 +123v3 +1UO +lzul +lzzu2 +£z3u3 ,
PR A R R A I A I )

C 1 1 1 1, 1 3,
&y _E(W,X-l-u,z):EWO,X+EZW1,X+§Z W2,x+§ul+zu2+zz U3,
1,0y 11, L3
gyz _E(W,y Ev,z) _EWO,y EZWLV EZ WZ,Y Evl ZV2 EZ V3'
where &, (p,d=x,y,zand i =t,c,b) is strain of ith layers. It is obvious that all layers have the

same strain due to considering similar displacement field for all of them. The constitutive equations
for sandwich plate can be obtained as [12]:

ou| [QL Q, Qs 0 0 0 ]s
O | |Qi Qz Qs 0 0 0 |&,
O-;z _ Qi Qu Qu 0 0 0 E%iz , 3)
ol 0 0 0 Q, 0 0 |l&
o 0 0 0 0 Qi 0 ||e,
ol L0 0 0 0 0 Qkllé,

where a:)q and Qr‘S (r,s =1,2,3and 44,55,66) are stress and the stiffness coefficient matrix of ith

layers, respectively. In this paper, the stiffness coefficients is defined for plain strain problems with
isotropic core (Q¢), orthotropic top and bottom layers (QL"). Also, the extended rule of mixture is
used to calculate mechanical properties of CNTRC face sheets [12]:

i Elil i VliZElil i V;1E1i1 i Eziz
EILL TLL TR Y TmLL @
Qz:.4 :GZ'3, Q5I5 =G1IS’ Qée :G1|2'
where:
E1i1 = 771Vfi E1i1f +Vni1 Eriw (52)
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*

77_i2 — V:;nt + V_r?’ (Sb)
EZZ EZZ f Em
S )
GlZ GlZ f Gm

The total potential energy consists of two factors, bending and elongation. Thus, it can be written as:
u'=uU!+U,], ®)

where U} and U_' represent potential energy due to bending and elongation, respectively, and
defined as [21]:

Ul = _[[%(O'i Ep + Oy Ey T OnEY) + Oy + 0,8, +0,,6,1dV, (7a)
Vi

XX < xx weyy 2%2z Xy < xy Xz xz

i 1
U, =IEU§’X(W,X)ZC'V, (7b)

\

in which, o, represent the uniform initial stress along the x direction. Hence, it is neglected the shear
stress and the normal stress of the uniform initial stress in the y direction.

3. Kinetic energy

The velocity vector (V) for axially moving sandwich plate with constant velocity C can be
expressed as follows [13]:

V =(C+u, +Cu )i+ (v, +Cv,)j+ (W, +Cw,)k. ®)

Thus, the kinetic energy of the sandwich plates is given by:

Ki = % P [ [(CHu, +Cu, )7 + (v, +Cv, )7 + (W, +Cw, )10V ©)
Vi
where K'and ' represent kinetic energy and density of ith layers, respectively.

4. Motion equations based on Hamilton’s principle

Based on Hamilton’s principle, equations of motion for axially moving sandwich plate are derived as
[21]:

5H=5f(ui—|<‘)dt=o. (10)
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Substituting  Egs. (7a), (7b) and (9) into Eq. (10), the  coefficients

of ou,, du,, ou,, u,, v, OV, OV, OV,, SW,, dw, and ow, can be obtained as follows:

ouy !

1 1

t t,2 t ot t~2yt tt t gt t gt tAt tAt

h P c uo,xx +2h P Cuo,xt +p C |2u2,xx + 2/0 Izcuz,xt _EQGG Izvz,xy _Q11 Izuz,xx -h Q13W1,x _Eh Qesvo,xy
hl t [II 1 t Il t I[ hl t 1h[ t hl t hC CC2

- levo,xy + 0o LUy _EQGG 2Uzyy -Qp Vot O Ugy ) Qss Uo,yy — Qi Ug o +h P Coug

c .C C C cypc 1 C C C C C C 1 C C C C
+2h P CuO,xt +p Czlzuz,xx + 2p Izcuz,xx _E 66 Izvz,xy _Qulz uz,xx -h Q13W1,x _Eh Q66V0,xy -h QlZVO,xy (11&)

1 1
cypc cqc cqc c _c cAC cAC b br~2 b b
+p IZUZ,tt _EQee Izuz,yy -Qp Izvz,xy +h°p Uo _Eh Qeeuo,yy —h Qlluo,xx +h°p°C Uo x« +2h°p Cuo,xt

2pb b b
K |

1 1
b byb b yb bAb b b bAb byb
+p°ColyU,  +2p°1,CU, _EQGG I, Vo ~Wila Uy — h Qs Wy, _Eh stvo,xy -h QlZVO,xy +p Uy,

1 1
_EQge I;u2,yy _lez IgVZ,xy + hbpb Uo _Ethgs Ugy — thlbluo,xx =0,

ou, :

1 tAt tgt t 2t t 21t tpt t t 1 t t 1 t t
Eh QsU, +2p0 1,Cuy  + o C°lLu,  +p ColLu,  +2p |4cu3,xt_Q12|4V3,xy_§Q66|4u3,yy_EQ66|2V1,xy

3 1 1 1

togt tt togt togt tt tAt togt togt togt
-Qp |2V1,xy +p Uy +EQ55 U —Qp LUy + 0 Uy +Eh Qss Wy, = Qpy 15U; 5 _EQBB |4V3,xy +§Q55 W, ,
2 t It 1 t It 1hc c 2 clcC cC2|c cCZIC 2 clcC c Ic

- Q13 2W2,X_EQ66 2u1,yy+E Q55U1+ Pl ul,xt+p 2u1,xx+p 4u3,xx+ Pl u3,x1 _le 4V3,xy

1 c c 1 c c [ cpc 3 c c cpc cpc 1 cMcC
_EQBG I U,y _EQGG |2V1,xy _le |2V1,xy +ply Us e +§Q55 I2u, _Qu I Uy + P I Uy o +Eh stwo,x (11b)

1. 1.
Eee 566
1
Ese

1 1
[ c cyc cgc c b~b b b b~21b
—Qpy 14Uz — |4V3,xy+EQ55|2W2,X_2Q13|2W2,><_ IZUl,yy+§h Qs +2p°1,Cuy, + p°Cl5u

1,%x
+0°C21Pu,  +2p°1°C 10y, ! o 1%V, N VALY | +3 il
P aUs +20°1,CU;  — Q5 1) 3,xy_§Qee aUgyy — 2 l,xy_le 2V TP 14Uy §Q55 2Us

1 1 1 1
b yb byb bAb b b b b b b b b b b
N1 I2 U1,xx +p Iz um +Eh stwo,x TN |4 u3,xx _EQee |4V3,xy +EQ55 Iz Wz,x - 2Q13 |2 W2,x _EQee Iz u1,yy =0,

ou, :

)

'C?l! +2p'1iC + p'C! +2p'1iC —1 IS -QL1lv, . —QLllv —1 Y
P aUz p LU, +p 2Uo xx P 10Uy EQGG 2Uo, vy Qzl; 0,xy Qzly 2%y EQGG 4 V2 %y

1 1

t t t t t t t t tyt t t t t t t tyt

_Qu Izuo,xx _Q13 Izwl,x +Q55|2Wl‘x _EQGB IZVO,xy +p Izuo,n + 2Q55 Izuz _EQGG |4u2,yy _Qu |4u2‘xx +p |4u2,n
1 1

C 2y¢ cypc C 2)¢c cypc C C C C C C Cc C

+p ColyU, o +2p71,CU,  + P Col Uy +2p IZCUO,xt_EQGGIZUO.yy_Q12|2V0,xy_Q12|4V2,xy_EQ66|4v2,xy

1 1 (11c)
Cc Cc C Cc c C Cc C cyc Cc Cc [ C Cc C cypc
_Qulzuo,xx _Q13I2W1,X+Q55I2W1,X_E 66|2V0‘xy+p Izuo,n +2Q55|2u2 _E 6e|4u2,yy _Q11|4u2,xx +p |4u2,n

b~21b b b b~2yb byb b b b b b b b b
+p Coly Uy +2p07 1,CUy  + 0" Coly U, +2p IZCUO,XI_E oo 12 Uo,yy = Quz 15 Vo, — 12|4V2,xy_5 oo 14 V2,9

b b b b byb 1 66 b b b yb 1 v b b byb _
- 11|2u0.xx_ 13|2W1,X+Q55|2W1,x_§ 66|2V0,xy+:0 IZUO,tI+2Q55|2u2_EQG6I4U2,yy—Q11I4u2,xx+p |4U2|n—0,
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ou,:
2 tltC '[Czlt 2 '[I'[C 1 '[I[ (II tll 3 t It 1 t It lII
Pl u3,xt +p 4u1,xx tzpl, ul,xl _EQGG 4u1,yy _le 4V1,><y +p 4u1,n +Est 2Uy _EQea 6u3,yy _Qu 6u3,xx

1 3 1 3
togt togt toqt togt togpt togt togt tgt
_2-0Q13 |4W2,>< _EQGG |6V3,xy _Qn |4ul,xx _Q12 |6V3,xy + Est Izwo,x _EQse |4V1,xy + Est |4W2,x + 5Q55|4u3

1
cypc C Cc Cc Cc cypc
Lo t20°1,CU _E 66|4u1,yy —N |4V1,xy +p0 1 Uy

3 C C l c C cyc c C l C c cgc c C 3 c c
+§Q55|2u1_EQ66|6u3,yy_Q11|Gu3,xx_2'0Q13|AW2,X_E 66|6V3,xy_ lllAul,xx_ 12|6V3,xy+§Q55|2W0,x

+2p' CPlgUy , + p' iUy, +29°15CU,  + p°CPl5u

1cc 3cc cyc cr~2pc cyc byb br~2pb byb
_EQee|4V1,xy+EQ55|4W2,><+5Q55|4U3+2,0 ClgUs o + 0 lg Uy +20° 17CU  + 0" Col U, +20°1,CU,

1 00 b b byb 3bb 1 o0 byb b b 1,0
_EQGGIAULyy _le |4 Vl,xy +p |4 ul,tt +EQ55 Iz U, _EQee Ia us,yy - 11|6 u3,xx - 2-0Q13 |4W2,x _EQee Ie V3,xy

1qp

3 3
b b b b b b b b b b b b~2pb bb
_Q11|4u1‘xx_ 12|6V3,xy+§Q55|2W0,x_§ 66|4V1,xy+EQ55|4W2,X+5Q55|4UB+2/) C |6u3,xx+p Iaua,nzov

oV, !
1 1
t .t 2 t .t tyt t 2t tgt tyt t t tt tAt
h'p'C Vo T 2h'p CVoa 20 1,8V, + ' CoLLVy _Q12|2u2,xy +0 1V, _EQSG 15V 0 — h Q23W1,y _Eh Q66u0,xy
1 1
tAt togt togt t ot tAt tt c _cmA2 c c cypc
-h leuo,xy _EQee Izuz,xy -Qy Izvz,yy +h' o'y, _Eh Qg Vo = szvo,yy +h*p°C, , +2h°p°Cy,, +20°15Cv,
CCZIC CIC CIC 1 CIC hC [ 1hC c hC c 1 CIC CIC
+p zvz,xx 7Q12 2 uz,xy +p zvz,n 7§Qee 2V2,><x - Q23W1,y 75 Qeeuo,xy - Q12uo,xy 7§Q66 Zuz,xy *sz 2V2,yy

1
c .c cAC cA\C b b2 b b b b br~2b b b byb
+h®p®v, _Eh QgsVo 0 =N Q22V0‘yy+h pC Vo,xx+2h P CVy, +20°1,Cv,, +p°C |2V2,xx_Q12|2u2,xy+p 15 Vo

1 1 1 1
_EQge |§Vz,xx - th§3W1,y _E th:e uO,xy - thlhzuO,xy _EQé?e Iguz,xy _ng |§Vz,yy + hbpb Vo,n _Ethé?eVo,xx - thSZVO,yy =0,

oV,

3.yy

1 t t s 2t tpt tpt t 2)t t t
Eh QuV,+2pColyV,, +2p 1,Cv,, +2p 1,Cv, +p ColVv,, —Qpl,V
t t 1 t t tpt t t 1 t t 3 t t 1 t t
l,u l.u l,v l.u Iow v h'Q, w
Q! 3y _EQGG Uiy TO 14Vsy -Qp 1, 1xy +§Q44 Woy +§Q44 2 3+§ Q. 0y

1 tgt 1 togt togt tt togt 1 togt 1 cAC
_2Q66|4V3,xx _§Q66|4u3,xy _2-0Q23|2W 2,y +p |2V1,tt _Q22|2V1,yy - 2Q66|2V1,xx +§h Q44V1
c 2 ¢ cypc cpc c 2 ¢ cpec cgyc
+2p°CoV 1 +20715CV  + 207 1CV 4 + P C oLV 55 —Qpl 4V, —QppliUsyy

1 C C C C C C 1 4 C 3 C Cc 1 C C 1 Cc C
_EQ(SGIZul,xy +0 1,V _lelzul,xy +§Q44|2W 2y +§Q44|2V3 +Eh Q. oy _E Y

3,xx

1 cqc cyc cyc cqc 1 cqc 1 b~ b b~ 2y b
_EQeel4us,xy_2-0Q23|2W2‘y+p IZVl,tt_ 22|2V1,yy_2 66|2V1,xx +§h Q44V1+2pC IzV

1,xx
1
byb b b b~2pb b b b b b b b b
+2p 1,0V + 207 1,CV 5, + " Col Vg, —Qpl 4V —Qpl4Us, _EQGGIZUI,xy +p0 1V
1 3 1 1 1
b b b b b b bA b byb byb byb
_lelzul,xy +EQ44|2W2,y +EQ44|2V3+§h Q44W0,y - 2Q66|4V3,xx - 2Q66|4u3,xy _2-0Q23|2W2,y

1
byb b yb b yb _
+0 1,V —Qp 15V, _§Q66|2V1,xx =0,
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oV, :
1 1
tt t2t tt t2t t gt gt tt t ot
2p 1,0V, + p CoLV, o +20 1,CV  +p C IZVO,XX_Q12I4u2,xy_§Q66|4u2,xy+p IZVO,tt_EQGGIZUO,xy
1 t It t It II! t It t It tlt 2 t It t It
_EQGG Vo = Qaa Ly Woy + 0 13Vo 0 +Quu oWy = Qi 15V 1y = Qi LU +2Q 1V, = Qs 14V,

1tt cypc cr2)c cpc cH2pc cgqc 1cc
_§Q66|4V2,xx+2p IACVZ,xt+p c |4V2,xx+2p IZCVO,xt+p C IZVO,xx_Q12|4u2,xy_EQ66|4u2,xy

1 1
cyc C C C C C C cpc C C C C cypc C C
+p |2V0,lt_§Q66|2u0,xy_E eelzvo,xx_Qzalzwl,y+p |4V2,n+Q44|2W1,y_ 22|2V0,yy_ 12|2u0,xy+2Q44|2V2 (119)
1
cqc cqc bb br2yb byb br~2yb b b
- ZZIAVZ,W_E o6 14 Voo T2 1,CV, o + 07 CoV, 27 10V + 0 Co Ly Vg = Qi LU,

1
Ese

blb

1 b b byb 1 b b b b b byb b yb
_EQBBIAUZ,nyrp IZVO,n_EQGGIZUO,xy_ IZVO,xx_Q23|2W1,y+p |4V2,tt+Q44|2Wl,y_ 22 2Vo,yy

1
b b b yb b b b b _
- 12|2u0,xy+2Q44|2V2_ 22|4V2‘W_EQ66|4V2,XX_0'

ov,:

3
tgt t 2t tyt t~2)t t t t t tgt t t
2p 16CV;  +2p ColeVy, +2071,Cvyy + p CoHLV L, — Q) |4u1,xy -Qy |4V1,yy +p Vi +§Q44 |4W2,y

1 1 1 1 3 3
togt togt togt togt togt togt togt togt
_Z-OQza |4W2,y _EQBB |6V3,xx _EQBB Ieus,xy _EQGB |4u1,xy _le Ieus,xy _EQ66|4V1,XX +§Q44 |2V1 +EQ44 I2W0,y

t t tyt t t cyc C 2)c cyc c~2pc cgpc
+5Qu Vs + 0 lg Ve = Qp lg Vs, +207 15 CV,  + 207 Colg vy, +20°1,Cvy  + p7CoL VL —Qp 13U,

3 1 1 1
4 4 cypc C C C C C C C C Cc C C C
_sz |4 Vl,yy +p |4V1,n + EQM |4 W2,y - 2-0Q23 |4 Wz,y _EQGS Ie V3,x>< _EQGG Ie u3,xy _EQGG |4 ul,xy _le Ie u3,xy

(11h)
1 3 3
_EQgelfvl,xx +EQ§4 Igvl +§Q:4 I2CW0,y +5Q§4 |§V3 +pc Igva,n _ng I§V3,yy + 2pb IgCVB,xt + Zpbczlg\/a,xx
3 1
+2pb|:CV11X,‘ + prZIEVLXX - 1b2 Ifulvxy _ng Iz':vl,yy +pb Izlljvl,n +§Q£4 IEWZ,y _20Q§3 IEWZ,y _EQ(?G I:V3,xx
1 o 1 500 b b 1 50 3bb 3bb b b byb
_EQGG Ie u3,xy _EQes I4 ul,xy T \12 Is ua,xy _E 66|4V1,xx +EQ44 |2V1 +§Q44 Iz Wo,y +5Q44 |4V3 +p Ievs,n
_ng Ié)vii,yy =0,
OW, :
1 1 1
h[ptczwo,xx + 2htpt CWO,xt + 2pt I;CWZ,XI +ptC2|;W2,xx +pt I;WZ,tt _EQ}M I;WZ,yy _Eth}MVLy _Eh[Qésul,x
1 t t 3 t t 3 t t t .t 1 tt 1 tt c .C 2 c _.C
_E 55 |2W2‘xx _E 55 |2u3,x _E 44 |2V3,y +h P Wo,n _Eh Q44W0,yy _Eh Q55W0‘xx +h P C WO,xx +2h P CWO‘xt
2 CICC CCzIC CIC _1 CIC _1hc c _1hc C _1 CIC _3 CIC
tep LW, 4+ 0 2 Wo TP 1 Wo §Q44 2 Wo E Q44V1,y E QssUy Est 2 Wa EQSS 2Usx )
(11i)

b b byb b~2yb
O,xx+2h p CWO‘XI+2p IZCWZ,xt+p C IZWZ,xx

3 cqc c ¢ 1 A 1 e
_EQ‘M 12 Vs,y + 00" Wo o _Eh QasWo,,y _Eh Q55 Wo i +h°p" Cow
1 1 1 1 3 3
+pb |§Wz,n _EQEA |§W2,yy _EthZVLy _EthSbSul,x _EQ5b5 Ing,xx —EQSS Igusvx _EQEA I§V3,y i hhpb W,
- N,h°w, . =0,

X 0xx — 'Vx 0,xx XX

1 1
—EthL W,y _Eth:5 Wy o — Nt W, — N h°w,
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ow

tt t t t
hQ33W +2p 1,Cw,, +Q23|2V2y+Q13|2u2x+p Wi Q55|2u2x+hQ23 0y+hQ13 0.

t t t 2pt tgt t t cAC cyc [
_Q44|2V2,y +p Colw, _EstlzwLxx _§Q44|2W1,yy +h*Qgw, +20°1;,Cw, , +Q5 1,V 2.y

c c cqc cAcC cAC cH2p¢ b b i
+Q13|2U2X+p |2W1tt Q55|2u2,x+hQ23V0,y+hQ13uo,x_ 44|2V2y+pc oWy, —Qss 12Uy, (11)

[ Cc
Est I 2W1,xx

¢ e b b byb b byb
_EQMIZWl,yy +h°Qgw, +2p°1,Cw +Q23|2V2y +Qpl; Uy +0 1W

1 1
bA b b b b b b2y b b b
+h°QpV oy +N°QpsUo, —Qul 2V, +0°ColW _§Q55|2W1,xx 5 44|2W1yy =0,

oW, :

2p'1,Cw,  +p'C

1 3 1
21t tyt 21t tyt togt togt togt
I 2xx+2p I CWOxt+p c I 0xx+p IZWO,n_EQ44|2W0,W_EQ44|4V3,y_§Q44|2V1y

1 1 3
t t tgt t t t t t gt t t t t t t
+2-0Q23 |4V3,y + 2'0Q13|4u3,x __st |2Wo,xx _EQ55 Izul,x + 2-OQ13 |2u1,x + 2-0Q23 |2V1,y _Est |4u3,x +4Q33 |2W2

1 t cyc c~2pcC cyc cr2
2Q44|4W2yy+p W — Q55|4 W, + 2P 15CW,  + P CoIW, o +20° 180y + p CoL Wy o + P75 W
L ISw, ol o 2.0Q.1; 2.0Q;1; 1w, L B 2.0Q;1; 11k
2Q44 2 EQM 4V3,y_EQ44 2V1‘y+ : Qza 4V3‘y+ . Q13 sz — 2 st 2 OXX_EQSS 2Up T2 Q13 2 Uiy ( )
3 1
cqc cgc cyc cqc cpc byb b
20Q23|2V1,y_§Q55|4u3,x+4Q33|2W2_EQ44|4W2,yy+p IaWo e — Q55|4 Wy o+ 207 1,CW,  + p cly 4 Wa
1
b b b byb b b b b b b
+20° 1, Cwy  + o C’l; 2Wox TP |2W0,n_EQ44|2 Q44 4Vay — Q44|2V1‘y+2-0Q23|4V +20Q13 aU
1 blb 1 blb 20 blb 20 blb 3 4 1 blb blb
__st 2W0,xx_§Q55 2U1,x+ Q13 Zul,x+ : Qz3 2V1,y 2 55 4 3x+ Q33 2 W. EQM 4W2,yy+p 4W2,n
b c
Q55|4 2,%X N I WZXX_NXIZ WZ,xx_NXIZ WZ‘xx :O'

where 1!, 1°and 17 are defined for top, core and bottom layers, respectively, as follows:

hC
HohY) he /2 —h¢/2
15,6 = .[ 2%z, 15, = f 22z,  1),6= I z%*%z . (12)
+he /2 —ht/2 —(hey

5. Analytical Solution

The analytical

solution of Egs. (11) exists for the simply-supported axially moving rectangular

sandwich plate with composite face sheets. In this approach, the displacements are considered as
functions which satisfy at least the various geometric boundary conditions. Based on Navier’s
procedure, the solution of the displacement variables can be expressed in the following forms [15]:

(13)

47



A. Ghorbanpour Arani, E. Haghparast, H. BabaAkbar Zarei

N M
Ui (x, y,t) = ZZUim” cos(a x)sin(By)e',

n=lm=1

N M
Vi (X, y,t) = ZZVim” sin(a x)cos(By)e',

n=lm=1

N M
Wi (X, y,t) = z ZWim” sin(ax)sin(By)e',

n=lm=1

Substituting above relations into Egs. (11) lead to final equations as a matrix form:

T T
|:Sij:|11xll|:U0mn Ulmn U2mn Usmn Vomn Vlmn Vzmn V3mn Womn Wlmn Wzmn:| :[Ni] , (14)

in which, N, (i =1,2,3) is related to external thermal or mechanical loads. It should be noted that in the
case of free vibrationN; (i =1,2,3) are assumed to be zero. The arrays of matrix S; are obtained from

Egs. (11) and (13).

6. Numerical results and discussion

In this section, effects of various parameters such as volume fraction of CNTs, axially moving speed,
aspect ratio and thickness on the vibration characteristics of axially moving sandwich plate with
composite face sheets are discussed in details. In the present study, Titanium alloy (Ti-6Al-4V) is
considered for the homogeneous core. Poly methyl methacrylate, referred to as PMMA, is selected
for the matrix of composite face sheets inside CNTs fibers. The effective material properties of
CNTs, Ti-6Al-4V and PMMA are presented in Table 1 and 2. It should be noted that

m =0.137,7, =1.022and 73 =0.715for the case of V ey =0.12, 7 =0.142,77, =1.626 and 7, =1.138for the

case of V' =0.17 , and 7 =0.141,77, =1.585 and 7, =1.109for the case of v’y =0.28 . Moreover, it’s
assumed that G, =G5 and G,3 =1.2G,, according to Wang and Shen [22].

Table 1. Mechanical properties of SWCNT with 10 [22].

Temperature
K £ (Pa) | BT (PR | GNP | N | N (kg/md)
300 5.6466 7.0800 1.9445 0.19 1400
500 5.5308 6.9348 1.9643 0.19 1400
700 5.4744 6.8641 1.9644 0.19 1400
Table 2. Mechanical properties of PMMA and Ti-6Al-4V [22].
Material E(GPa) p(Kg /m?) v
PMMA 3.52-0.0034T 1150 0.34
Ti-6Al-4V 122.56(1—4.586x1074T) 4429 0.29

Dimensionless parameters are defined to obtain dimensionless results:
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Fig. 2 illustrates the influence of volume fractions of CNTs on the dimensionless frequencies of
axially moving sandwich plate. This figure shows that increasing volume fractions of CNTs leads to
increase stiffness of sandwich plate and consequently the frequencies of moving system increase. In
addition, it’s evident that increasing v”\r from 0.17 to 0.28 not considerably affected the natural

frequencies of moving system, especially at lower aspect ratios. Moreover, it can be observed that
the frequencies moving system increase with increasing aspect ratios of sandwich plate.

Dimensionless frequency (Q)

.5 3 3.
alb (C=0.05)

Fig. 2. Dimensionless frequency versus aspect ratio of sandwich plate for different volume fractions of
CNTs.

The real part of dimensionless frequency versus dimensionless axially moving speed for different
core thickness is depicted in Fig.3. As can be observed, Im(w) diminishes with increasing C . These
physically proved that the system is stable and the small moving speed does not result in damping
behavior. For zero resonance frequency, axially moving sandwich plate becomes unstable due to the
divergence via a pitchfork bifurcation and the corresponding moving speed is called the critical
speed. Therefore, with increasing moving speed, system stability decreases and became susceptible
to buckling. It is obvious that increasing core thickness causes to increase strength of sandwich plate
and consequently the frequencies of system increase.

..... —o— h /h=0.8, h/h=0.1
0880000000000 n . P00 —0— N /h=0.7, h/h=0.15 | -
v ? —0— hy/h=0.6, h/h=0.2

—A— hc/h:O.S, h(/h:O.ZS i

Dimensionless frequency (Q)

c ‘ ‘
0 0.05 0.1 0.15 0.2 0.25

Fig. 3. Dimensionless frequency versus dimensionless moving speed of sandwich plate in different
values of core and face sheets thickness.
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The influences of volume fractions of sandwich plate on dimensionless frequencies versus
dimensionless thickness parameter are demonstrated in Fig.4. This figure approved that increasing
thickness of sandwich plate leads to increase frequencies of moving system. In addition, the effect of
CNTs reinforcement is more significant at thicker sandwich plate. Also, it can be found that the
frequencies of sandwich plate which is reinforced by 0.17 and 0.28 volume fractions of CNTSs are

similar. So, in this study V"o =0.17 is selected for the face sheets of sandwich plate.

Dimensionless frequency (Q)

0.2
002 0025 003 0035 004 0045 005 0055 006 0065 0.07
hla

Fig. 4. The influence of CNTs volume fraction on dimensionless frequency versus dimensionless thickness
ratio of sandwich plate.

As mentioned ago, SWCNTSs is selected as a reinforcement of face sheets of sandwich plate. The
mechanical properties of CNTSs at different temperatures are adopted from Wang and Shen (2012).
Fig. 5 presents the effect of temperature on vibration frequencies of moving sandwich plate. As can
be seen, increasing temperature leads to increase the frequencies of moving composite plate,
especially at higher thickness of plate.

Dimensionless frequency (Q)

0.04 0.05 0.06 0.07 0.08 0.09 0.1
h/b

Fig. 5. The effect of temperature on dimensionless frequencies of axially moving sandwich plate versus
dimensionless thickness ratio of sandwich plate.

Fig.6 shows the influences of temperature changes and volume fractions on dimensionless
frequencies versus dimensionless core thickness parameter, simultaneously. This figure approved
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that volume fractions of CNTs and temperature changes are a significant parameters which are
changed frequencies of moving sandwich plate, considerably.

0.4 T T T T T T T

—>— V=017, T=700 K
—— V' _=0.12, T=700 K

cnt

0361 _o— V,=0.17, T=500 K

0.341| —O—V_ =0.12, T=500 K
—A— V' =017, T=300 K

0.32~ ent

—o— V=012, T=300 K

0.3

0.28

0.26

Dimensionless frequency (Q2)

0.24

0.22

2 r I r
0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85
h/h

Fig. 6. Dimensionless frequency versus dimensionless core thickness of sandwich plate in different
temperature and volume fractions of CNTSs.

The effect of moving speed of sandwich plate on dimensionless frequency versus dimensionless
aspect ratio is demonstrated in Fig. 7. It can be found from this figure that the values of critical speed
in square plate are lower than rectangular plate. Moreover, increasing moving speed leads to increase
instability of sandwich plate and consequently the frequencies decrease.

Dimensionless frequency (Q)

Fig. 7. The effect of moving speed on dimensionless frequency versus aspect ratio of sandwich plate.

Dimensionless frequencies versus dimensionless initial tension in different moving speeds are
demonstrated in Fig.8. It’s concluded that increasing pre-tension leads to decrease dimensionless
frequency of sandwich plate. In addition, the influence of initial tension in axially moving plate with
higher moving speeds is more considerable than stationary plates.
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Dimensionless frequency (Q)

Fig. 8. The effect of moving speed on the dimensionless frequency versus dimensionless initial tension.

Fig.9 illustrates the effect of vibration modes on dimensionless frequencies versus dimensionless
moving speed of sandwich plate. It is evident that the critical speed and frequencies of sandwich

plate in third mode are higher than the first mode.

Dimensionless frequency (Q2)

Fig. 9. The effect of vibration modes on the dimensionless frequency versus dimensionless moving speed of
sandwich plate.

In order to examine the reliability of the presented method, the results of this method are compared
with the work by Wang and Shen (2012). For this purpose, sandwich plate with CNTRC face sheets

is considered. Non-dimensional natural frequencies are obtained byQ:a)aZ/h(«/pC/EC) where

ptand E°represents mass density and Young’s module of core layer at T=300 K. As can be seen,
there are good agreement between the results of present study and their approach.

Table 3. Comparison between non-dimensional natural frequencies of sandwich plate with CNTRC face
sheets (C=0, a/b=1, b/h=20)

h h h
T=300K e O b
Vienr 0.17 0.28 0.17 0.28 0.17 0.28
Present 45577 | 45673 | 42701 | 42710 | 37173 | 3.7203
Ref. [22] 45887 | 45871 | 42642 | 42939 | 37320 | 37378
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7. Conclusion

Based on HSDT, vibration analysis of axially moving sandwich plate with composite face sheets was
developed for the first time. PMMA was selected as a matrix composite face sheets inside CNTs
fibers. Extended rule of mixture was utilized to obtain structural properties of composite face sheets.
Considering simply supported boundary condition, the motion equations were obtained using
Hamilton’s principle and solved by analytical solution. It was found that vibrating behavior of
moving sandwich plate was strongly dependent on moving speed, so that, with increasing moving
speed, system stability decreases and became susceptible to buckling. In addition, increasing small
amount in volume fraction of fibers led to increase frequencies of sandwich plate, considerably.
Comparison between natural frequencies of this study and the work which was done by Wang and
Shen [22] confirmed the accuracy of presented results. The results of this study is hoped to be used in
optimum design of aircrafts and military equipment.
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