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Abstract 

Free vibration analysis of Au nanowires has been investigated. Au nanowire is modeled as a thin beam by using the 
continuum theory. Three-different cross-sections such as circular, rectangular and triangular are taken into 

consideration for ultra thin nanowires. Frequency values have been obtained for different geometric parameters and 

simply supported boundary condition (S-S). This study is helpful for design of the nanowires based instruments in modern 

Nanoelectromechanical systems (NEMS). 

Keywords: Nanowires, Au, Frequency, Mode shapes, Mechanical properties. 

1. Introduction 

It is known that the nanowire is one-dimensional nanostructure. Nanowires have many novel and 

potential applications due to their unique physical properties such as electrical, magnetic, optical, and 

mechanical. Many of previous theoretical investigations in this area employed molecular dynamic 

simulations to obtain the mechanical properties [1-7]. Frequency properties are important for some 

nanowire applications such as actuators, probes, resonators, and sensors. In this study, free vibration 

analysis of Au nanowire is investigated. Nanowire is modeled via Euler-Bernoulli beam as 

mechanical model. The effects of cross-section, mode numbers and dimension on frequency have 

been discussed. 

 

2. Discrete singular convolution (DSC) 
 

The method of discrete singular convolution (DSC) is a novel kind numerical approach for 

numerical solutions of differential equations [8]. Wei and his co-workers first applied the DSC 

algorithm to solve solid and fluid mechanics problem [9-18]. Civalek [19-30] gives numerical 

solution of free vibration problem of rotating and laminated conical shells and plates. Consider a 

distribution, T and )(tη as an element of the space of the test function. A singular convolution can be 

defined by [9] 
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where )( xtT  is a singular kernel. For example, singular kernels of delta type [10]  

 

)()( )( xδxT n ;    (n =0,1,2,...,).      (2) 

 

 

Kernel )()( xδxT  is important for interpolation of surfaces and curves, and )()( )( xδxT n  for n>1 

are essential for numerically solving differential equations. With a sufficiently smooth 

approximation, it is more effective to consider a discrete singular convolution [11] 
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The Shannon’s kernel is regularized as [11] 

 













 







σ

xx

xxπ/

xxπ
xxδ

k

k

k
,σ k

2

2

2

)(
exp

))((

)])(/sin[(
)( ;  >0.    (4) 

 

 

Equation (4) can also be used to provide discrete approximations to the singular convolution kernels 

of the delta type [12] 
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3. Euler-Bernoulli beam model 

 

Beam model is widely used for nano-scaled components analysis [31-33]. Governing equation of 

motion for a beam is given as [35]: 

 

     (6) 

 

By using the analytical (separation of variables) and the DSC methods, related equation is solved for 

three different cross-sections (Table 1) and S-S boundary condition listed in Table 2. The resulting 

frequency equation can be expressed as follows: 
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4. Numerical results 

 

By using the three-different cross sections given in Table 1, frequency values are obtained for S-

S nanowires for Au material. The Young modulus of Au used in calculations is 79 GPa, and mass 

density is 3.19  gr/cm
3
. Results are depicted in Table 2 and Figs 1-2, respectively. The results 

given in Table 2 are obtained via DSC method. The other results are obtained via analytical. 

 

 

Table 1. Cross-sections, areas and moment of inertia formulas of nanowire 

Cross-section Name Area Moment of Inertia 

 

Triangular 
4

3d
A   

 

 

Rectangular bhA   
 

 

Circular 
4

2D
A


  

 

 

 

Table 2. Frequency values (GHz) for three-different cross sections 

 

Mode Numbers 

, L = 50 nm  

Circular 

D = 3.57 nm 

Rectangular 

h = 5 nm 

b = 2 nm 

 

Triangular 

d = 4.81 nm 

 

 

1 7.1346 11.5345 7.8439  

2 28.5285 46.1207 31.6972  

3 64.1647 103.7664 70.5801  

4 114.0682 184.4720 125.4836  

5 178.2203 288.2246 196.0677  

 d 

 x 

 y 

 x 

 y 

 b 

  h 

 x 

 y 
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Fig. 1. First five mode shape for both ends are simply supported microbeam. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Natural frequency values for different cross-sections and first five mod numbers 

 

 

5. Concluding remarks 

 

Free vibration analysis of gold nanowire is presented. By using continuum beam theory, the 

governing equation is obtained for Au nanowire. Then frequency and mode shapes obtained for 

different parameters.   Frequency values are increased with the increasing value of mode numbers. 

Rectangular cross-section has biggest frequency value for Au nanowires using same cross-section 

area. Also, circular nanowire has smaller frequency value than the rectangular and triangular. 
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