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Abstract

This paper presents free vibration analysis of a cross-ply laminated plate under temperature rising with
considering temperature-dependent physically properties. Material properties of laminas are orthotropic and
temperature-dependent. In the kinematic model of the plate, first-order shear deformation plate theory is used. In
solution method, the Navier procedure is used for a simply supported plate. The vibration frequencies of the
laminated plate are obtained and discussed for different values of temperature, sequence of laminas and
orientation angle of layers. Also, the difference between temperature dependent and independent physical
properties is investigated.
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1. Introduction

Laminated composite structures have been used a lot of engineering applications, for example;
aircrafts, space vehicles, automotive engineering, defence industries and civil engineering
applications because these structures have higher strength-weight ratios, more lightweight and
ductile properties than classical materials. In generally, laminated composite structures are used
in higher thermal systems. Hence, the temperature effect is very important issue of laminated
composite structures and their design. In the literature, studies about temperature problems in
composite plates are; Pal [1] analyzed nonlinear vibrations of plates under thermal loading.
Chen and Chen [2] examined thermal buckling of laminated plates by finite element method.
Chen and Chen [3] studied thermal post-buckling of laminated plates under thermal loading.
Liu and Huang [4] analyzed vibration of laminated plates under thermal loading with first shear
deformation plate theory (FSDPT). F. Lee et al. [5] studied free vibration of symmetrically
laminated plates with FSDPT. Reddy and Chin [6] investigated dynamic thermo-elastic analysis
of functionally graded cylinders and plates. Lee and Saravanos [7] studied thermo-piezoelectric
composite materials with thermal effects with temperature dependent material properties.
Reddy [8] performed static analysis of functionally graded plates by using FSDPT. Jane and
Hong [9] investigated thermal problems of thin laminated rectangular orthotropic plates by
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using generalized differential quadrature method. Shen [10] examined thermal post-buckling of
laminated plate resting on elastic foundation. Singha et al. [11] studied thermal postbuckling of
graphite/epoxy laminated plates of various by finite element method. Sayman [12] analyzed
elastic-plastic behavior of aluminum metal-matrix laminated plate under temperature effect.
Patel et al. [13] examined flexural analysis of laminated plates of bimodulus materials under
temperature effect. Shukla et al. [14] investigated postbuckling of laminated plates under
temperature effect. Liew et al. [15] examined thermal buckling/post-buckling of thick laminated
plates uniform temperature rising. Emery et al. [16] investigated thermoelastic stress analysis
of laminated orthotropic plates. Shen [17] examined nonlinear analysis of functionally graded
nanocomposite plates reinforced by single-walled carbon nanotubes under temperature effect.
Zenkour and Alghamdi [18] examined bending of functional graded layered plates under
thermal and mechanical loads. VVosoughi et al. [19] examined thermal postbuckling thermal
postbuckling behavior of laminated composite skew with temperature dependent material
properties. Kishore et al. [20] investigated nonlinear analysis of magnetostrictive layered plate
by using third order shear deformation theory. Sahoo and Singh [21] presented static analysis
of layered plates by using the hyperbolic zigzag theory. Carrera et al. [22] analyzed static stress
problems in multi-layer plates. Sahoo and Singh [23] examined static analysis of layered plates
by using a new inverse trigonometric ZigZag theory. Chen et al. [24] investigated thermal
buckling and vibration of composite plates with temperature-dependent material properties and
initially stressed. Torabizadeh and Fereidoon [25] solved general laminated composite plates
under mechanical and thermal loading. Houmat [26] investigated the geometrically nonlinear
free vibration of laminated composite rectangular plates with curvilinear fibers. Khorshid and
Farhadi [27] investigated hydrostatic vibration analysis of a laminated composite rectangular
plate partially contacting with a bounded fluid. Akbas [28,29,30,31,32,33,34,35,36,37,38]
investigated dynamics and stability of functionally graded composite beams by using finite
element method. Sayyad et al. [39,40] solved thermoelastic analysis of laminated plates under
thermal loading. Li and Qiao [41,42] examined thermal postbuckling analysis of laminated
composite beams under thermal loading. Akbas [43] examined a nano-plate by using
generalized differential quadrature method. Ramos et al. [44] investigated thermoelastic static
analysis of composite plates by using a new combined trigonometric equation. Akbas [45,46]
investigated functionally graded porous plates. Choudhury et al. [47] solved stress analysis of
composite plate under thermo mechanical loads. Akbas [48,49,50] investigated thee laminated
beams with nonlinear behavior. Akbas [51] examined bi-material composite beams by using
finite element method. Yiiksel et al. [52] examined temperature dependent vibration of a simply
supported plate by using the Navier method. Yiiksel and Akbas [53] investigated the stress
analysis of a laminated composite plate under temperature rising. Also, many researchers
investigated vibration, buckling, post-buckling analysis of nano composites, functionally
graded composite structures in thermal and mechanical loads [54-73].

In this paper, free vibration of cross-play laminated plate examined under thermal effects. In
constitute model of laminas, orthotropic and temperature-dependent properties are used.
FSDPT is used in plate model. The Navier procedure is used for a simply supported plate.
Effects of temperature, sequence of laminas and orientation angle of layers on the vibration
characterises of laminated plate are investigated in temperature-dependent physically property.
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2. Theory and Formulations

In figure 1, a simply supported rectangular cross-ply laminated composite plate with thickness
h, the length of Ly and Ly, is displayed. Laminated composite plate is subjected to a non-
uniform temperature rising with temperature rising values at the bottom surface 47z and top
surface ATr. Height of face sheet layers is equal to each other. In this study, numbers of the
laminas are selected as two and three.
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Fig. 1. A simply supported laminated rectangular composite plate under non-uniform temperature
rising for a) two layer and b) three layer.

Based on FSDPT, the strain-displacement relations are expressed as;

_ 6u01 aQ)Xl _ 6u02 a®X2 1
X1 T Gx, X3 X, €% T Gx, X3 X, (1)
aqu aqu aQ)Xl aQ)XZ
=—= X —= 2
Yxix: = 3%, + 39X, T 43 9X, + X, (2)
_ 6u03 _ 6u03 _
Vxix; = X, + Ox, Vx,x3 = 9%, + Bx, , Exyx, = 0 (3)

where ugyq, Ugz, Ugs indicate displacements in X;, X, and X5 directions, respectively.
Constitutive expressions of orthotropic laminated plate for nth layer with temperature effect are

given as follows:
()]
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where Q;;(T) is the transformed reduced material properties which depends the temperature (T)
are given as follows:

Q,,(T) = Q11 (T)cos*0 + 2(Qu2(T) + 2Qu6(T))sin?0cos?0 + Qo (T)sin*6

alz(T) = (Q11(T) + Q22(T) — 4Q66(T))5in2950529 + Q12(T)(sin*@ + cos*6)

Q,,(T) = Q11 (T)sin*0 + 2(Q12(T) + 2Q46(T))sin?0cos?6 + Qy2(T)cos*o

616(’[‘) = (Qn(T) —Q2(T) - ZQee(T))Sin950539 + (Q12(T) — Q22(T) + 2Q46(T))sin*6cos
EZG(T) = (Qn(T) —Q2(T) - ZQGG(T))Sin395059 + (Q12(T) — Q22(T) + 2Q46(T))sinbcos*6
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Q66(T) = (Qn(T) + Q22(T) — 2Q12(T) — 2Q66(T))Sin290052 + Qo6(T) (sin*0 + cos*6)
Q44(T) = Q44(T) cos® 6 + Qs5(T) sin* 6
Q4s(T) = (Qs5(T) — Q44(T)) cos O sin 6
Qs5(T) = Qua(T) sin® 6 + Qs5(T) cos® 6 (%)

where, 6 is the fiber orientation angle. Components of the Q;; are given as follows;

E{(T) E(T)
T) = —2— T)=—"—"—
(1) = —— Q22(T) = - ——
_ Vv12E(T) _ v21E1(T) m) _ o n) _
Qua(1) = 2B (D) W =6 @@ =62
Eo(T) E1(T)
Q1 (T) = riilszl = I:ld;/z:l Qe6(T) = G1,(T) (6)

The material properties of orthotropic laminated plate is a function of temperature (T) as follows
(Shen[67]; Li and Qiao[68]).

E,(T) = E;(1 —0,5%1073AT)GPa

E,(T) = E,(1-10,2*1073AT)GPa

Gy, (T) = G15(T) = G 1,(1 — 0,2 * 1073AT)GPa

Gy3(T) = Gp3(1 — 0,2 x 10"3AT)GPa

a,(T) = a;(1+40,51073AT)/°C

a,(T) = a,(1+0,5*1073AT)/°C @)

The transformed the thermal expansion coefficients ay, x,, @x,x,, @x,x, are given as follows;

ax,x, = X1€05%0 + a,sin*6
a = a,c05°0 + a,sin’0
X2X> 2 1
2ay x, = 2(a; — ay)sinbcosO (8)

where @, and a, are thermal expansion coefficients in X, and X, directions, respectively. Stress
resultants are given as follows;

{N) _ [TA(D]  [BMDI]({e°h _ (INT}
{{M}} - [[B(T)] [D(T)] {{51}} {{MT}} ©)
where N is normal force and M is moment. {N7} and {MT} are thermal force resultants:

(N} = TNy [ Qy (MMM} ATdX, (10a)
M7} = 30 [, Qu (T ™M@(1)}" ATX5dX, (10b)

{e°} and {e'} are given as follows;

aum 6¢X1

aXl aXl

ou 00y

0y — 02 1y 2
Ougy , Ouoy 00x, n %%,
0X> 0Xq 0X, 00X,

where 4;; is extensional stiffness, D;; is bending stiffness, and B;; is bending — extensional
coupling stiffness. 4;;, B;; and D;; are expressed as follows:
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—(n)
Aij = ZE:l Qi]' (Zn+1 - Zn) (128.)
1 —(n)
Bij = EZE=1 Qi]' (Z121+1 - Zrzl) (12b)
1 —(n)
Dy = ;ZE=1 Qij (Zos1 — Z3) (12c)

The elastic strain energy (U;) and the kinetic energy (T) of laminated plate are expressed as
follows:

Ui =5J, oy &;av (13a)

r=3h o|(Ge) + (Ge) + () v (130)
The Hamilton’s principle of the problem is as follows;

8 [T — Uldt (14)

After using Hamilton’s principle, governing equations of the laminated plate can be obtained;

220x,

ON JON 9%u
a);llxl + a);zXz =1, atsl +1 Py (15a)
6NX1X2 6NX2X2 _ azuoz OZQXZ
0Xq * 0X; = 1o at2 th at2 (15b)
anl OQXZ azu03
T ox, Do (150)
ax )¢ 9t2
OMx x4 ! OMX1;2 aijxl 9%,
o T ok, OnThga thTs (150)
aMX1X2 6MX2X2 _ _ 62®X2 62u02
9X, + aX, QX2 —12 9c2 +11 922 (159)
where
NX1X1 E O-X1X1
NX2X2 = fzh O-XZXZ dX3 (16a)
NX1X2 2\0x,x,
My, x, r = fzh Ox,x,  X3d X5 (16b)
MX1X2 2 OX,X,
Rios 4 g
B )
Ox, Ays(T)  Ass(T) auTof-l_le
I h 1
{11] =[xy X3 ¢ podXs (16d)
I 2 X32

In solution of problem, Navier method is implemented in the solution of the problem. In Navier
solution, boundary conditions and displacement fields the plate are given the following
equations:

u01(X1, 0, t) = 0, u01(X1, b, t) = 0, uoz(O,Xz, t) = 0, qu(a,Xz, t) = 0, (17&)
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Up3(X1,0,t) =0, uy3(X1,b,t) =0, uy3(0,X5,t) =0, ups(a, X, t) =0, (17b)
Ox, (X1,0,t) =0, Oy (X1,b,t) =0, @x,(0,X5,t) =0, 0Oy, (a,X,t)=0, (17¢)
Ny x,(0,X5,t) =0, Ny x (a,X5t) =0, Ngx (X1,0,t) =0, Nygx (X;,b,t) =0 (17d)
M 4. (0,X,,8) =0, MJy (aXpt) =0, MLy (X,0,6)=0, MLy (X;,bt)=0(l7e)

Uo (X1, X3, ) = Yooy Yneq Us . (D) cosk X sinlX, et (18a)
Ug2 (X1, X2, t) = Yooy Yomeq Uz, (8)sinkX; coslX, et (18b)
Uo3(X1, X2, 1) = Yoy Xme Uz, (£)sinkX; sinlX, e~ (18c)
Bx, (X1, X2, ) = Xy Xm=1 X, ()coskX; sinlX, et (18d)
Ox, (X1, X, 1) = Xy Xom=a Y, ()sinkX; coslX, et (18e)

where Uy, ., Uz, Us, ., Xlen, Yy , are displacement coefficients, k = mm/Ly , | =

Zm
nm/Ly,, B is the natural frequency and i = v—1. The temperature rising is defined as follows
in the Navier solution;

AT (X1, X2, X3, 1) = Xpm1 Zm=1 Ty (X3, t)sink X, sinlX, (192)
Toun(Xa, ) = —— [ [ AS(Xy, X5, X3, t) sink X, sinlX, dX,dX, — (19)
XLy

Substituting Egs. (17-19) into Egs. (15), and then using matrix procedure, the algebraic
equations of free vibration problem can be expressed as follows;

[P11 P12 0  pis P1s] [M11 0 0 0 0 ]\ glmn (0
P12z P22 0 Dpas DPas| | 0 my, O 0 0 | 2mn Lol
0 0 P33 P3s DP3s|—w?| 0 0 mz O 0| Usn ¢ = 40 $(20)
Pia P24 P34 D44 DPas | o 0 0 my, O l Xlen lOJ
lP15 P25 P35 DPas PssJ Lo 0 0 0 m55J Yy, 0
where

P11 = (A1 (Mk? + Ags(T)1?), P12 = (A12(T) + Age(T))kl

P1a = (B11(T)k? — Beg(T)I?), p1s = (B12(T) + Bee(T))kKL,

P22 = (Ae(TDk? + Ay (TYI?), P2s = Pis,

P2s = (Be(T)k? + By (T)1?), p33 = K(Ass(T)k? + Aye(TH1?),

P34 = KAss(T)k, p3s = KAy (T)],

Pas = (D11(T)k2 + DZZ(T)lz + KAs5(T))

Pas = (D12(T) + Dee(T)kL, pss = (Dee(T)k? + Dy (T)I? + KAy (T))k

myq = Iy, My = Iy, M3z = Iy, Myy =1, M5 =1, (21)

where K is shear correction factor. Dimensionless fundamental frequency @ is defined as
follows;

Wmn = Wmn (szz/ﬂz)\/ ph/D;, (22)
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3. Numerical Results

In numerical study, dimensionless frequencies of cross-ply laminated simply-supported plate
are calculated obtained in figures for different temperature values, orientation angles and
sequence of laminas in temperature-dependent physically property. The mechanical properties
of manufactured using graphite epoxy and its material parameters are; E1=150 GPa, E>=9 GPa,
Es=9 GPa, G12=7,1 GPa, G23=2,5 GPa, G13=7,1 GPa, p=1600 kg/m3, vio= v1=0.3, a; =
1,1.107%, a; = 25,2.107% at 30°C (Li and Qiao [68], Oh vd. [69]). The dimensions of plate
are considered as follows: Ly, =4m, Ly, = 4m, h=0.2 m. In the obtaining the numerical
results and figures, MATLAB program is used. It is noted that temperature rising of bottom
surface ATy is changed and the temperature of the top surface AT, is constant AT; = 20°C in
the numerical calculations.

In the numerical results, the relation between temperature rising and dimensionless natural
frequencies is presented for different orientation angles and sequence of laminas. Also the
difference between temperature dependent and independent physical properties on the
dimensionless natural frequencies of laminated composite plate is discussed. For this purpose,
figures 2,3,4 and 5 show the effect of the temperature rising on the first three lower
dimensionless natural frequencies of the laminated plate for 0/0, 0/90, 90/0 and 90/90,
respectively in two layer sequence in both temperature dependent and independent physical
properties. Also, figures 6,7,8,9 and 10 show effect of temperature rising on first three lower
dimensionless natural frequencies of the laminated plate for 0/0/0, 0/90/0, 90/0/90, 0/90/90 and
90/90/90, respectively in three layer sequence in both temperature dependent and independent
physical properties.

13 50
h e a)
W 12 \\\‘\\‘ Wz 45 R . b)
0/0 0/0
ATy = 20°C ) 40 ATy = 20°C
200 400 600 800 1000 200 400 600 800 1000
ATy °C ATy °C
100
_ — c)
®s: Q) ““\\\ ------ Temperature-Dependent
0/0 Temperature-independent
AT, = 20°C
200 400 600 800 1000
ATy °C

Fig. 2. The natural frequencies versus temperature rising for the two layers for stacking sequence 0/0
fora) w,, b) w,, and ¢) wss.
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10 36
a) —
@ QfT @2 34 \\‘\-\\ b)
0/90 0/90
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AT °C ATy °C
15
k\\“\\_‘ L‘) ------ Temperature-Dependent
@33 70 \\‘\\\ Temperature-independent
0/90 A
ATy = 20°C
200 400 600 800 1000
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Fig. 3. The natural frequencies versus temperature rising for the two layers for stacking sequence 0/90
for a) w,, b) w,, and c) wss.
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Fig. 4. The natural frequencies versus temperature rising for the two layers for stacking sequence 90/0
fora) w;; b) w,, and c) ws3.
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Fig. 5. The natural frequencies versus temperature rising for the two layers for stacking sequence
90/90 for a) w4, b) w,, and €) wss.

183



Y.Z. Yiiksel, S.D.Akbag

13 45 =
B 12 @ 40
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Fig. 6. The natural frequencies versus temperature rising for the three layers for stacking sequence
0/0/0 for a) wy; b) @w,, and ¢) ws5.
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0/90/0 Tt
25 ATp=20°C' -
20 200 400 600 800 1000
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Fig. 7. The natural frequencies versus temperature rising for the three layers for stacking sequence
0/90/0 for a) @y, b) w,, and €) ws3.
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Fig. 8. The natural frequencies versus temperature rising for the three layers for stacking sequence
90/0/90 for a) w1, b) w,, and ¢) ws3.
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10 36
@ 9 T @ 34 s
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ATT=20 C
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Fig. 9. The natural frequencies versus temperature rising for the three layers for stacking sequence
0/90/90 for a) w4, b) w,, and c) ws33.

13 45 —
@n 12 @ 40
90/ 90 / 90 90/90 /90
e \Ty=20"C 1 35 ATyr=20"C
20 200 400 600 800 1000 20 200 400 600 800 1000
ATg C \Ts C
920
s 80 \_\\—““—\\\ ------ Temprerature-Dependent
90790/ 90 Temprerature-Independent
ATy=20"C
70
20 200 400 600 800 1000
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Fig. 10. The natural frequencies versus temperature rising for the three layers for stacking sequence
90/90/90 for a) w11 b) w,, and ¢) w33.

Figures 2-10 display that increasing in temperature, dimensionless frequency of laminated plate
decreases significantly. With increasing temperature, the results of difference between
temperature dependent and independent properties increase considerably.

Frequencies of temperature dependent are smaller than the frequencies of temperature
independent. This is because; with the temperature increase, the strength of laminated plate
decreases in the temperature dependent physical properties, so the frequencies decrease
naturally. However, the strength of the laminated plate does not change with temperature
increase in the temperature independent physical properties.

With changing the orientation angles, the dimensionless frequency change significantly. With
increasing the orientation angles from O degree, the dimensionless frequency decrease
considerably. Also, the stacking sequence play important role on vibration characterises of the
laminated composite plate. In is observed from these figures that stacking sequence is very
effective on thermal vibration responses.
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4. Conclusions

In the presented paper, free vibration of a laminated plate is studied under thermal loading by
using FSDPT in temperature-dependent physically properties. Cross-ply laminated sequence
and simply-supported boundary conditions are considered. The Navier solution is implemented
in the solution method. Effects of temperature, sequence of laminas and orientation angle of
layers on the vibration characterises of laminated plate are investigated in temperature
dependent physical properties. Also, difference between temperature dependent and
independent are examined on the vibration results. As seen from the graphs that increasing
temperature yields to increasing difference between the temperature dependent and independent
results. Increasing fiber orientation angles and temperature yields to decreasing the frequency
values. Frequencies of temperature dependent physical properties are smaller than those of
temperature independent’s. Stacking sequence and orientation angle of layers play important
role on vibration behavior of composite laminated plates.
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