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Abstract 

This paper presents free vibration analysis of a cross-ply laminated plate under temperature rising with 

considering temperature-dependent physically properties. Material properties of laminas are orthotropic and 

temperature-dependent. In the kinematic model of the plate, first-order shear deformation plate theory is used. In 

solution method, the Navier procedure is used for a simply supported plate. The vibration frequencies of the 

laminated plate are obtained and discussed for different values of temperature, sequence of laminas and 

orientation angle of layers. Also, the difference between temperature dependent and independent physical 

properties is investigated. 
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1. Introduction 

 

Laminated composite structures have been used a lot of engineering applications, for example; 

aircrafts, space vehicles, automotive engineering, defence industries and civil engineering 

applications because these structures have higher strength-weight ratios, more lightweight and 

ductile properties than classical materials. In generally, laminated composite structures are used 

in higher thermal systems. Hence, the temperature effect is very important issue of laminated 

composite structures and their design. In the literature, studies about temperature problems in 

composite plates are; Pal [1] analyzed nonlinear vibrations of plates under thermal loading. 

Chen and Chen [2] examined thermal buckling of laminated plates by finite element method. 

Chen and Chen [3] studied thermal post-buckling of laminated plates under thermal loading. 

Liu and Huang [4] analyzed vibration of laminated plates under thermal loading with first shear 

deformation plate theory (FSDPT). F. Lee et al. [5] studied free vibration of symmetrically 

laminated plates with FSDPT. Reddy and Chin [6] investigated dynamic thermo-elastic analysis 

of functionally graded cylinders and plates. Lee and Saravanos [7] studied thermo-piezoelectric 

composite materials with thermal effects with temperature dependent material properties. 

Reddy [8] performed static analysis of functionally graded plates by using FSDPT. Jane and 

Hong [9] investigated thermal problems of thin laminated rectangular orthotropic plates by 
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using generalized differential quadrature method. Shen [10] examined thermal post-buckling of 

laminated plate resting on elastic foundation. Singha et al. [11] studied thermal postbuckling of 

graphite/epoxy laminated plates of various by finite element method. Sayman [12] analyzed 

elastic-plastic behavior of aluminum metal-matrix laminated plate under temperature effect. 

Patel et al. [13] examined flexural analysis of laminated plates of bimodulus materials under 

temperature effect. Shukla et al. [14] investigated postbuckling of laminated plates under 

temperature effect. Liew et al. [15] examined thermal buckling/post-buckling of thick laminated 

plates uniform temperature rising. Emery et al. [16] investigated thermoelastic stress analysis 

of laminated orthotropic plates. Shen [17] examined nonlinear analysis of functionally graded 

nanocomposite plates reinforced by single-walled carbon nanotubes under temperature effect. 

Zenkour and Alghamdi [18] examined bending of functional graded layered plates under 

thermal and mechanical loads. Vosoughi et al. [19] examined thermal postbuckling thermal 

postbuckling behavior of laminated composite skew with temperature dependent material 

properties. Kishore et al. [20] investigated nonlinear analysis of magnetostrictive layered plate 

by using third order shear deformation theory. Sahoo and Singh [21] presented static analysis 

of layered plates by using the hyperbolic zigzag theory. Carrera et al. [22] analyzed static stress 

problems in multi-layer plates. Sahoo and Singh [23] examined static analysis of layered plates 

by using a new inverse trigonometric ZigZag theory. Chen et al. [24] investigated thermal 

buckling and vibration of composite plates with temperature-dependent material properties and 

initially stressed. Torabizadeh and Fereidoon [25] solved general laminated composite plates 

under mechanical and thermal loading. Houmat [26] investigated the geometrically nonlinear 

free vibration of laminated composite rectangular plates with curvilinear fibers. Khorshid and 

Farhadi [27] investigated hydrostatic vibration analysis of a laminated composite rectangular 

plate partially contacting with a bounded fluid. Akbaş [28,29,30,31,32,33,34,35,36,37,38] 

investigated dynamics and stability of functionally graded composite beams by using finite 

element method. Sayyad et al. [39,40] solved thermoelastic analysis of laminated plates under 

thermal loading. Li and Qiao [41,42] examined thermal postbuckling analysis of laminated 

composite beams under thermal loading. Akbaş [43] examined a nano-plate by using 

generalized differential quadrature method. Ramos et al. [44] investigated thermoelastic static 

analysis of composite plates by using a new combined trigonometric equation. Akbaş [45,46] 

investigated functionally graded porous plates. Choudhury et al. [47] solved stress analysis of 

composite plate under thermo mechanical loads. Akbaş [48,49,50] investigated thee laminated 

beams with nonlinear behavior. Akbaş [51] examined bi-material composite beams by using 

finite element method. Yüksel et al. [52] examined temperature dependent vibration of a simply 

supported plate by using the Navier method. Yüksel and Akbaş [53] investigated the stress 

analysis of a laminated composite plate under temperature rising. Also, many researchers 

investigated vibration, buckling, post-buckling analysis of nano composites, functionally 

graded composite structures in thermal and mechanical loads [54-73]. 

 

In this paper, free vibration of cross-play laminated plate examined under thermal effects. In 

constitute model of laminas, orthotropic and temperature-dependent properties are used. 

FSDPT is used in plate model. The Navier procedure is used for a simply supported plate. 

Effects of temperature, sequence of laminas and orientation angle of layers on the vibration 

characterises of laminated plate are investigated in temperature-dependent physically property. 
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2. Theory and Formulations 

In figure 1, a simply supported rectangular cross-ply laminated composite plate with thickness 

h, the length of 𝐿𝑋1 and 𝐿𝑋2 is displayed. Laminated composite plate is subjected to a non-

uniform temperature rising with temperature rising values at the bottom surface ΔTB and top 

surface ΔTT. Height of face sheet layers is equal to each other. In this study, numbers of the 

laminas are selected as two and three. 

 

 
Fig. 1. A simply supported laminated rectangular composite plate under non-uniform temperature 

rising for a) two layer and b) three layer. 

 

Based on FSDPT, the strain-displacement relations are expressed as;  

 

𝜀𝑋1𝑋1 =
𝜕𝑢01

𝜕𝑋1
+ 𝑋3

𝜕∅𝑋1

𝜕𝑋1
        𝜀𝑋2𝑋2 =

𝜕𝑢02

𝜕𝑋2
+ 𝑋3

𝜕∅𝑋2

𝜕𝑋2
                                      (1) 

                          𝛾𝑋1𝑋2 =
𝜕𝑢02

𝜕𝑋2
+
𝜕𝑢02 

𝜕𝑋1
+ 𝑋3 (

𝜕∅𝑋1

𝜕𝑋2
+
𝜕∅𝑋2

𝜕𝑋1
)                       (2) 

                          𝛾𝑋1𝑋3 =
𝜕𝑢03

𝜕𝑋1
+ ∅𝑋1  , 𝛾𝑋2𝑋3 =

𝜕𝑢03

𝜕𝑋2
+ ∅𝑋2  , 𝜀𝑋3𝑋3 = 0                      (3) 

 

where 𝑢01, 𝑢02, 𝑢03 indicate displacements in 𝑋1, 𝑋2 and 𝑋3 directions, respectively. 

Constitutive expressions of orthotropic laminated plate for nth layer with temperature effect are 

given as follows: 

                     {
𝜎𝑋1𝑋1
𝜎𝑋2𝑋2
𝜎𝑋1𝑋2

}

(𝑛)

= [

𝑄11(𝑇) 𝑄12(𝑇) 𝑄16(𝑇)

𝑄12(𝑇) 𝑄22(𝑇) 𝑄26(𝑇)

𝑄16(𝑇) 𝑄26(𝑇) 𝑄66(𝑇)

]

(𝑛)

{
 
 

 
 

𝜕𝑢01

𝜕𝑋1
− 𝑋3

𝜕2𝑢03

𝜕𝑋1
2 − �̅�11(𝑇)𝛥𝑇

𝜕𝑢02

𝜕𝑋2
− 𝑋3

𝜕2𝑢03

𝜕𝑋2
2 − �̅�22(𝑇)𝛥𝑇

𝜕𝑢01

𝜕𝑋2
+
𝜕𝑢02 

𝜕𝑋1
− 𝑋3

𝜕2𝑢03

𝜕𝑋2
2 − 𝑋3

𝜕2𝑢03

𝜕𝑋1
2 − 2�̅�12(𝑇)𝛥𝑇}

 
 

 
 
(𝑛)

    (4a) 

                                           {
𝜎𝑋2𝑋3
𝜎𝑋1𝑋3

}
(𝑛)

= [
�̅�44(𝑇) �̅�45(𝑇)

�̅�45(𝑇) �̅�55(𝑇)
]

(𝑛)

{

𝜕𝑢02
𝜕𝑋2

−
𝜕𝑢03
𝜕𝑋2

𝜕𝑢03
𝜕𝑋1

−
𝜕𝑢03
𝜕𝑋1

}

(𝑛)

                                                      (4b) 

 where �̅�𝑖𝑗(T) is the transformed reduced material properties which depends the temperature (T) 

are given as follows: 
 

          𝑄
11
(𝑇) = 𝑄11(𝑇)𝑐𝑜𝑠

4𝜃 + 2(𝑄12(𝑇) + 2𝑄66(𝑇))𝑠𝑖𝑛
2𝜃𝑐𝑜𝑠2𝜃 + 𝑄22(𝑇)𝑠𝑖𝑛

4𝜃                 

          𝑄12(𝑇) = (𝑄11(𝑇) + 𝑄22(𝑇) − 4𝑄66(𝑇))𝑠𝑖𝑛
2𝜃𝑐𝑜𝑠2𝜃 + 𝑄12(𝑇)(𝑠𝑖𝑛

4𝜃 + 𝑐𝑜𝑠4𝜃)  

          𝑄22(𝑇) = 𝑄11(𝑇)𝑠𝑖𝑛
4𝜃 + 2(𝑄12(𝑇) + 2𝑄66(𝑇))𝑠𝑖𝑛

2𝜃𝑐𝑜𝑠2𝜃 + 𝑄22(𝑇)𝑐𝑜𝑠
4𝜃  

          𝑄16(𝑇) = (𝑄11(𝑇) − 𝑄12(𝑇) − 2𝑄66(𝑇))𝑠𝑖𝑛𝜃𝑐𝑜𝑠
3𝜃 + (𝑄12(𝑇) − 𝑄22(𝑇) + 2𝑄66(𝑇))𝑠𝑖𝑛

3𝜃𝑐𝑜𝑠𝜃  

          𝑄26(𝑇) = (𝑄11(𝑇) − 𝑄12(𝑇) − 2𝑄66(𝑇))𝑠𝑖𝑛
3𝜃𝑐𝑜𝑠𝜃 + (𝑄12(𝑇) − 𝑄22(𝑇) + 2𝑄66(𝑇))𝑠𝑖𝑛𝜃𝑐𝑜𝑠

3𝜃  
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          𝑄
66
(𝑇) = (𝑄11(𝑇) + 𝑄22(𝑇) − 2𝑄12(𝑇) − 2𝑄66(𝑇))𝑠𝑖𝑛

2𝜃𝑐𝑜𝑠2 + 𝑄66(𝑇)(𝑠𝑖𝑛
4𝜃 + 𝑐𝑜𝑠4𝜃)                   

          �̅�44(𝑇) = 𝑄44(𝑇) cos
2 𝜃 + 𝑄55(𝑇) sin

2 𝜃  

              �̅�45(𝑇) = (𝑄55(𝑇) − 𝑄44(𝑇)) cos 𝜃 sin 𝜃 

              �̅�55(𝑇) = 𝑄44(𝑇) sin
2 𝜃 + 𝑄55(𝑇) cos

2 𝜃                                                                                               (5) 
 

where, 𝜃 is the fiber orientation angle. Components of the 𝑄𝑖𝑗 are given as follows;  

                                                     𝑄11(𝑇) =
𝐸1(𝑇)

1−𝜈12𝜈21
  ,        𝑄22(𝑇) =

𝐸2(𝑇)

1−𝜈12𝜈21
                 

    𝑄12(𝑇) =
𝜈12𝐸2(𝑇)

1−𝜈12𝜈21
=  

𝜈21𝐸1(𝑇)

1−𝜈12𝜈21
               𝑄44

(𝑛)(𝑇) = 𝐺23
(𝑛)(𝑇)                 𝑄55

(𝑛)(𝑇) = 𝐺13
(𝑛)(𝑇)                           

                                                     𝑄21(𝑇) =
𝜈12𝐸2(𝑇)

1−𝜈12𝜈21
=  

𝜈21𝐸1(𝑇)

1−𝜈12𝜈21
          𝑄66(𝑇) = 𝐺12(𝑇)                                   (6) 

 

The material properties of orthotropic laminated plate is a function of temperature (T) as follows 

(Shen[67]; Li and Qiao[68]). 

 
  𝐸1(𝑇) = 𝐸1(1 − 0,5 ∗ 10

−3∆𝑇)𝐺𝑃𝑎                                         
  𝐸2(𝑇) = 𝐸2(1 − 0,2 ∗ 10

−3∆𝑇)𝐺𝑃𝑎                                         
                                             𝐺12(𝑇) = 𝐺13(𝑇) = 𝐺 12(1 − 0,2 ∗ 10

−3∆𝑇)𝐺𝑃𝑎                               
  𝐺23(𝑇) = 𝐺23(1 − 0,2 ∗ 10

−3∆𝑇)𝐺𝑃𝑎                                     
  𝛼1(𝑇) =  𝛼1(1 + 0,5 ∗ 10

−3∆𝑇)/℃                                          

                                             𝛼2(𝑇) =  𝛼2(1 + 0,5 ∗ 10
−3∆𝑇)/℃                                                                         (7) 

  

The transformed the thermal expansion coefficients 𝛼𝑋1𝑋1 ,  𝛼𝑋2𝑋2 ,  𝛼𝑋1𝑋2 are given as follows; 

 

                                      𝛼𝑋1𝑋1 = 𝛼1𝑐𝑜𝑠
2𝜃 + 𝛼2𝑠𝑖𝑛

2𝜃  

                                      𝛼𝑋2𝑋2 = 𝛼2𝑐𝑜𝑠
2𝜃 + 𝛼1𝑠𝑖𝑛

2𝜃                                                                                                                                                                                                                                                                                                                                                       

                                      2𝛼𝑋1𝑋2 = 2(𝛼1 − 𝛼2)𝑠𝑖𝑛𝜃𝑐𝑜𝑠𝜃                                                         (8) 

 

where 𝛼1 and 𝛼2 are thermal expansion coefficients in 𝑋1 and 𝑋2 directions, respectively. Stress 

resultants are given as follows; 

 

                                                         {
{𝑁}

{𝑀}
} = [

[𝐴(𝑇)] [𝐵(𝑇)]

[𝐵(𝑇)] [𝐷(𝑇)]
] {
{𝜀0}

{𝜀1}
} − {

{𝑁𝑇}

{𝑀𝑇}
}                                              (9) 

 

where N is normal force and M is moment.  {𝑁𝑇} and {𝑀𝑇} are thermal force resultants: 
                                

                                                        {𝑁𝑇} = ∑ ∫ 𝑄𝑖𝑗(𝑇)
𝑛{�̅�(𝑇)}𝑛

𝑧𝑛+1
𝑧𝑛

𝑁
𝑛=1 ∆𝑇𝑑𝑋3                                            (10a) 

                                                         {𝑀𝑇} = ∑ ∫ 𝑄
𝑖𝑗
(𝑇)𝑛{�̅�(𝑇)}𝑛

𝑧𝑛+1
𝑧𝑛

𝑁
𝑛=1 ∆𝑇𝑋3𝑑𝑋3                                      (10b) 

 

{𝜀0} and {𝜀1} are given as follows; 

 

                                            {𝜀0} =

{
 
 

 
 

𝜕𝑢01

𝜕𝑋1
𝜕𝑢02

𝜕𝑋2
𝜕𝑢01

𝜕𝑋2
+
𝜕𝑢02

𝜕𝑋1 }
 
 

 
 

 ,   {𝜀1} =

{
 
 

 
 

𝜕∅𝑋1

𝜕𝑋1
𝜕∅𝑋2

𝜕𝑋2
𝜕∅𝑋1

𝜕𝑋2
+
𝜕∅𝑋2

𝜕𝑋1 }
 
 

 
 

                       (11) 

 

where 𝐴𝑖𝑗   is extensional stiffness,  𝐷𝑖𝑗 is bending stiffness, and  𝐵𝑖𝑗 is bending – extensional 

coupling stiffness. 𝐴𝑖𝑗,  𝐵𝑖𝑗  and  𝐷𝑖𝑗  are expressed as follows: 
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                                                    Aij = ∑ Qij
(n)
(zn+1 − zn)

n
k=1                                              (12a) 

                                                    Bij =
1

2
∑ Qij

(n)
(zn+1
2 − zn

2)n
k=1                                            (12b) 

                                                    Dij =
1

3
∑ Qij

(n)
(zn+1
3 − zn

3)n
k=1                                            (12c) 

 

The elastic strain energy (𝑈𝑖) and the kinetic energy (𝑇) of laminated plate are expressed as 

follows: 

 

                                                𝑈𝑖 =
1

2
∫ 𝜎𝑖𝑗 𝜀𝑖𝑗 𝑑𝑉𝑉

                                                              (13a) 

                                                          𝑇 =
1

2
∫ 𝜌 [(

𝜕𝑢01

𝜕𝑡
)
2

+ (
𝜕𝑢02

𝜕𝑡
)
2

+ (
𝜕𝑢03

𝜕𝑡
)
2

] 𝑑𝑉
𝑉

                       (13b) 

 

 The Hamilton’s principle of the problem is as follows; 

 

                                                 𝛿 ∫ [𝑇 − 𝑈𝑖]𝑑𝑡
𝑡

0
                                                                       (14) 

 

After using Hamilton’s principle, governing equations of the laminated plate can be obtained; 
   

                                         
𝜕𝑁𝑋1𝑋1

𝜕𝑋1
+
𝜕𝑁𝑋1𝑋2

𝜕𝑋2
= 𝐼0

𝜕2𝑢01

𝜕𝑡2
+ 𝐼1

𝜕2∅𝑋1

𝜕𝑡2
                                         (15a)      

                                          
𝜕𝑁𝑋1𝑋2

𝜕𝑋1
+
𝜕𝑁𝑋2𝑋2

𝜕𝑋2
= 𝐼0

𝜕2𝑢02

𝜕𝑡2
+ 𝐼1

𝜕2∅𝑋2

𝜕𝑡2
                                        (15b) 

                                          
𝜕𝑄𝑋1

𝜕𝑋1
+
𝜕𝑄𝑋2

𝜕𝑋2
= 𝐼0

𝜕2𝑢03

𝜕𝑡2
                                                                  (15c) 

                                   
𝜕𝑀𝑋1𝑋1

𝜕𝑋1
+
𝜕𝑀𝑋1𝑋2

𝜕𝑋2
− 𝑄𝑋1 = 𝐼2

𝜕2∅𝑋1

𝜕𝑡2
+ 𝐼1

𝜕2𝑢01

𝜕𝑡2
                                   (15d) 

                                   
𝜕𝑀𝑋1𝑋2

𝜕𝑋1
+
𝜕𝑀𝑋2𝑋2

𝜕𝑋2
− 𝑄𝑋2 = 𝐼2

𝜕2∅𝑋2

𝜕𝑡2
+ 𝐼1

𝜕2𝑢02

𝜕𝑡2
                                   (15e) 

where 

                                             {

𝑁𝑋1𝑋1
𝑁𝑋2𝑋2
𝑁𝑋1𝑋2

} = ∫ {

𝜎𝑋1𝑋1
𝜎𝑋2𝑋2
𝜎𝑋1𝑋2

} 𝑑𝑋3

ℎ

2

−
ℎ

2

                                                    (16a) 

                                              {

𝑀𝑋1𝑋1

𝑀𝑋2𝑋2

𝑀𝑋1𝑋2

} = ∫ {

𝜎𝑋1𝑋1
𝜎𝑋2𝑋2
𝜎𝑋1𝑋2

}𝑋3𝑑𝑋3

ℎ

2

−
ℎ

2

                                             (16b) 

                                       {
𝑄𝑋2
𝑄𝑋1

} = 𝐾 [
𝐴44(𝑇) 𝐴45(𝑇)

𝐴45(𝑇) 𝐴55(𝑇)
] [

𝜕𝑢03

𝜕𝑋2
+ ∅𝑋2

𝜕𝑢03

𝜕𝑋1
+ ∅𝑋1

]                                (16c) 

                                                                {
𝐼0
𝐼1
𝐼2

} = ∫ {

1
𝑋3
𝑋3

2
}𝜌0𝑑𝑋3

ℎ

2

−
ℎ

2

                                     (16d) 

 

In solution of problem, Navier method is implemented in the solution of the problem. In Navier 

solution, boundary conditions and displacement fields the plate are given the following 

equations: 
 

𝑢01(𝑋1, 0, 𝑡) = 0,    𝑢01(𝑋1, 𝑏, 𝑡) = 0,    𝑢02(0, 𝑋2, 𝑡) = 0,    𝑢02(𝑎, 𝑋2, 𝑡) = 0,               (17a) 
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𝑢03(𝑋1, 0, 𝑡) = 0,    𝑢03(𝑋1, 𝑏, 𝑡) = 0,    𝑢03(0, 𝑋2, 𝑡) = 0,    𝑢03(𝑎, 𝑋2, 𝑡) = 0,                  (17b) 

 ∅𝑋1(𝑋1, 0, 𝑡) = 0,    ∅𝑋1(𝑋1, 𝑏, 𝑡) = 0,    ∅𝑋2(0, 𝑋2, 𝑡) = 0,    ∅𝑋2(𝑎, 𝑋2, 𝑡) = 0,                (17c) 

𝑁𝑋1𝑋1
𝑇 (0, 𝑋2, 𝑡) = 0,    𝑁𝑋1𝑋1

𝑇 (𝑎, 𝑋2, 𝑡) = 0,    𝑁𝑋2𝑋2
𝑇 (𝑋1, 0, 𝑡) = 0,      𝑁𝑋2𝑋2

𝑇 (𝑋1, 𝑏, 𝑡) = 0   (17d) 

𝑀𝑋1𝑋1
𝑇 (0, 𝑋2, 𝑡) = 0,    𝑀𝑋1𝑋1

𝑇 (𝑎, 𝑋2, 𝑡) = 0,    𝑀𝑋2𝑋2
𝑇 (𝑋1, 0, 𝑡) = 0,      𝑀𝑋2𝑋2

𝑇 (𝑋1, 𝑏, 𝑡) = 0 (17e) 

 

                           𝑢01(𝑋1, 𝑋2, 𝑡) = ∑ ∑ 𝑈1𝑚𝑛(𝑡)𝑐𝑜𝑠𝑘𝑋1 𝑠𝑖𝑛𝑙𝑋2
∞
𝑚=1

∞
𝑛=1 𝑒−𝑖β𝑡                      (18a) 

                           𝑢02(𝑋1, 𝑋2, 𝑡) = ∑ ∑ 𝑈2𝑚𝑛(𝑡)𝑠𝑖𝑛𝑘𝑋1 𝑐𝑜𝑠𝑙𝑋2
∞
𝑚=1

∞
𝑛=1 𝑒−𝑖β𝑡                      (18b) 

                           𝑢03(𝑋1, 𝑋2, 𝑡) = ∑ ∑ 𝑈3𝑚𝑛(𝑡)𝑠𝑖𝑛𝑘𝑋1 𝑠𝑖𝑛𝑙𝑋2
∞
𝑚=1

∞
𝑛=1 𝑒−𝑖β𝑡                       (18c) 

                           ∅𝑋1(𝑋1, 𝑋2, 𝑡) = ∑ ∑ 𝑋𝑋1𝑚𝑛
(𝑡)𝑐𝑜𝑠𝑘𝑋1 𝑠𝑖𝑛𝑙𝑋2

∞
𝑚=1

∞
𝑛=1  𝑒−𝑖β𝑡                    (18d) 

                           ∅𝑋2(𝑋1, 𝑋2, 𝑡) = ∑ ∑ 𝑌𝑋2𝑚𝑛
(𝑡)𝑠𝑖𝑛𝑘𝑋1 𝑐𝑜𝑠𝑙𝑋2

∞
𝑚=1

∞
𝑛=1 𝑒−𝑖β𝑡                     (18e) 

 

where 𝑈1𝑚𝑛, 𝑈2𝑚𝑛, 𝑈3𝑚𝑛, 𝑋𝑋1𝑚𝑛, 𝑌𝑋2𝑚𝑛 are displacement coefficients, 𝑘 = 𝑚𝜋/𝐿𝑋1, 𝑙 =

𝑛𝜋/𝐿𝑋2, 𝛽 is the natural frequency and 𝑖 = √−1. The temperature rising is defined as follows 

in the Navier solution; 
 

                                ∆𝑇(𝑋1, 𝑋2, 𝑋3, 𝑡) = ∑ ∑
 

𝑇𝑚𝑛(𝑋3, 𝑡)𝑠𝑖𝑛𝑘𝑋1 𝑠𝑖𝑛𝑙𝑋2
∞
𝑚=1

∞
𝑛=1                   (19a) 

                               𝑇𝑚𝑛(𝑋3, 𝑡) =
4

𝐿𝑋𝐿𝑌
∫ ∫ ∆𝑆(𝑋1, 𝑋2, 𝑋3, 𝑡)𝑠𝑖𝑛𝑘𝑋1𝑠𝑖𝑛𝑙𝑋2 𝑑𝑋1𝑑𝑋2

𝑏

0

𝑎

0
        (19b) 

 

Substituting Eqs. (17-19) into Eqs. (15), and then using matrix procedure, the algebraic 

equations of free vibration problem can be expressed as follows;  

 

           

(

 
 

[
 
 
 
 
𝑝11 𝑝12 0 𝑝14 𝑝15
𝑝12 𝑝22 0 𝑝24 𝑝25
0 0 𝑝33 𝑝34 𝑝35
𝑝14 𝑝24 𝑝34 𝑝44 𝑝45
𝑝15 𝑝25 𝑝35 𝑝45 𝑝55]

 
 
 
 

− 𝜔2

[
 
 
 
 
𝑚11 0 0 0 0
0 𝑚22 0 0 0
0 0 𝑚33 0 0
0 0 0 𝑚44 0
0 0 0 0 𝑚55]

 
 
 
 

)

 
 

{
 
 

 
 
𝑈1𝑚𝑛
𝑈2𝑚𝑛
𝑈3𝑚𝑛
𝑋𝑋1𝑚𝑛
𝑌𝑋2𝑚𝑛}

 
 

 
 

=

{
 
 

 
 
0
0
0
0
0}
 
 

 
 

(20) 

where 

                     𝑝11 = (𝐴11(𝑇)𝑘
2 + 𝐴66(𝑇)𝑙

2),   𝑝12 = (𝐴12(𝑇) + 𝐴66(𝑇))𝑘𝑙      
                     𝑝14 = (𝐵11(𝑇)𝑘

2 − 𝐵66(𝑇)𝑙
2), 𝑝15 = (𝐵12(𝑇) + 𝐵66(𝑇))𝑘𝑙,  

                    𝑝22 = (𝐴66(𝑇)𝑘
2 + 𝐴22(𝑇)𝑙

2), 𝑝24 = 𝑝15,   
                    𝑝25 = (𝐵66(𝑇)𝑘

2 + 𝐵22(𝑇)𝑙
2), 𝑝33 = 𝐾(𝐴55(𝑇)𝑘

2 + 𝐴44(𝑇)𝑙
2),   

                    𝑝34 = 𝐾𝐴55(𝑇)𝑘,   𝑝35 = 𝐾𝐴44(𝑇)𝑙,             
                     𝑝44 = (𝐷11(𝑇)𝑘

2 + 𝐷22(𝑇)𝑙
2 + 𝐾𝐴55(𝑇))    

                    𝑝45 = (𝐷12(𝑇) + 𝐷66(𝑇))𝑘𝑙, 𝑝55 = (𝐷66(𝑇)𝑘
2 + 𝐷22(𝑇)𝑙

2 + 𝐾𝐴44(𝑇))𝑘    
                    𝑚11 = 𝐼0, 𝑚22 = 𝐼0, 𝑚33 = 𝐼0, 𝑚44 = 𝐼2, 𝑚55 = 𝐼2                                     (21)        

 

where K is shear correction factor. Dimensionless fundamental frequency �̅� is defined as 

follows; 

 

                                             �̅�𝑚𝑛 = 𝜔𝑚𝑛(𝐿𝑋2
2/𝜋2)√𝜌ℎ/𝐷22                                               (22) 
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3. Numerical Results 

In numerical study, dimensionless frequencies of cross-ply laminated simply-supported plate  

are calculated obtained in figures for different temperature values, orientation angles and 

sequence of laminas in temperature-dependent physically property. The mechanical properties 

of manufactured using graphite epoxy and its material parameters are; E1=150 GPa, E2=9 GPa, 

E3=9 GPa, G12=7,1 GPa, G23=2,5 GPa, G13=7,1 GPa, ρ=1600 kg/m3, ν12= ν21=0.3, 𝛼1 =
1,1. 10−6, 𝛼1 = 25,2. 10

−6 at 30 ̊ 𝐶 (Li and Qiao [68], Oh vd. [69]). The dimensions of plate 

are considered as follows: 𝐿𝑋1 = 4m , 𝐿𝑋2 = 4m, h=0.2 m. In the obtaining the numerical 

results and figures, MATLAB program is used. It is noted that temperature rising of bottom 

surface 𝛥𝑇𝐵 is changed and the temperature of the top surface 𝛥𝑇𝑇 is constant 𝛥𝑇𝑇 = 20 ̊𝐶 in 

the numerical calculations. 

In the numerical results, the relation between temperature rising and dimensionless natural 

frequencies is presented for different orientation angles and sequence of laminas. Also the 

difference between temperature dependent and independent physical properties on the 

dimensionless natural frequencies of laminated composite plate is discussed. For this purpose, 

figures 2,3,4 and 5 show the effect of the temperature rising on the first three lower 

dimensionless natural frequencies of the laminated plate for 0/0, 0/90, 90/0 and 90/90, 

respectively in two layer sequence in both temperature dependent and independent physical 

properties. Also, figures 6,7,8,9 and 10 show effect of temperature rising on first three lower 

dimensionless natural frequencies of the laminated plate for 0/0/0, 0/90/0, 90/0/90, 0/90/90 and 

90/90/90, respectively in three layer sequence in both temperature dependent and independent 

physical properties.  

 

 

Fig. 2. The natural frequencies versus temperature rising for the two layers for stacking sequence 0/0 

for a) �̅�11  b) �̅�22 and c) �̅�33. 
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Fig. 3. The natural frequencies versus temperature rising for the two layers for stacking sequence 0/90 

for a) �̅�11  b) �̅�22 and c) �̅�33. 
 

 

 

Fig. 4. The natural frequencies versus temperature rising for the two layers for stacking sequence 90/0 

for a) �̅�11  b) �̅�22 and c) �̅�33. 

 

 

 

Fig. 5. The natural frequencies versus temperature rising for the two layers for stacking sequence 

90/90 for a) �̅�11  b) �̅�22 and c) �̅�33. 
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Fig. 6. The natural frequencies versus temperature rising for the three layers for stacking sequence 

0/0/0 for a) �̅�11  b) �̅�22 and c) �̅�33. 

 

 

Fig. 7. The natural frequencies versus temperature rising for the three layers for stacking sequence 

0/90/0 for a) �̅�11  b) �̅�22 and c) �̅�33. 

 

    

Fig. 8. The natural frequencies versus temperature rising for the three layers for stacking sequence 

90/0/90 for a) �̅�11  b) �̅�22 and c) �̅�33. 
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Fig. 9. The natural frequencies versus temperature rising for the three layers for stacking sequence 

0/90/90 for a) �̅�11  b) �̅�22 and c) �̅�33. 

 

 

Fig. 10. The natural frequencies versus temperature rising for the three layers for stacking sequence 

90/90/90 for a) �̅�11  b) �̅�22 and c) �̅�33. 

 

Figures 2-10 display that increasing in temperature, dimensionless frequency of laminated plate 

decreases significantly. With increasing temperature, the results of difference between 

temperature dependent and independent properties increase considerably.  

 

Frequencies of temperature dependent are smaller than the frequencies of temperature 

independent. This is because; with the temperature increase, the strength of laminated plate 

decreases in the temperature dependent physical properties, so the frequencies decrease 

naturally. However, the strength of the laminated plate does not change with temperature 

increase in the temperature independent physical properties. 

 

With changing the orientation angles, the dimensionless frequency change significantly. With 

increasing the orientation angles from 0 degree, the dimensionless frequency decrease 

considerably. Also, the stacking sequence play important role on vibration characterises of the 

laminated composite plate. In is observed from these figures that stacking sequence is very 

effective on thermal vibration responses.  
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4. Conclusions 

In the presented paper, free vibration of a laminated plate is studied under thermal loading by 

using FSDPT in temperature-dependent physically properties. Cross-ply laminated sequence 

and simply-supported boundary conditions are considered. The Navier solution is implemented 

in the solution method. Effects of temperature, sequence of laminas and orientation angle of 

layers on the vibration characterises of laminated plate are investigated in temperature 

dependent physical properties. Also, difference between temperature dependent and 

independent are examined on the vibration results. As seen from the graphs that increasing 

temperature yields to increasing difference between the temperature dependent and independent 

results. Increasing fiber orientation angles and temperature yields to decreasing the frequency 

values. Frequencies of temperature dependent physical properties are smaller than those of 

temperature independent's. Stacking sequence and orientation angle of layers play important 

role on vibration behavior of composite laminated plates. 
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