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Abstract 

In this study, a mathematical model in form ODEs system examined the dynamics among populations of 
susceptible bacteria and resistant bacteria to antibiotic, antibiotic concentration and hosts immune system cells 
in an individual (or host), received antibiotic therapy in the case of a local bacterial infection, was proposed. 
For equilibrium points of this model, both local and global stability analysis have been also performed. In 
addition that, results of these analysis have been supported by numerical simulations. 
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1. Introduction 

Infections are shown as the main cause of diseases throughout human history and bacterial 
ones among these are more noticeable [1]. The first respond of host to such infections is 
through its immune system [2]. In this sense, the different host reactions to fight the same 
infection may be different due to hosts immune system response. If the host can not provide 
the respond required to destroy or limit the infection, then additional procedures can be 
needed. The most prevalent method for struggling bacterial infection is by way of antibiotic 
therapy. Howeover, the most important problem derived from this therapy is the development 
of the bacteria resistance ability against the used antibiotic. Resistance to antimicrobial agents 
is both the reasonable and expected result of the use of these agents to treat human infections 
[3]. In this respect, the dynamics among antibiotic therapy, immune cells and bacteria in case 
of bacterial infection in host are significant to find out the character of the infection. 

Mathematical models used in analyzed of biological applications are significant tools used not 
only in researching the spread of infectious diseases of individuals in a population, but also in 
estimating the timing and expansion of infection and possible reinfection processes in an 
individual [4,5]. Discovering the early dynamics of acute infections and foreseeing the time of 
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occurrence and magnitude of the maximum load of the bacteria and the immune system cells 
can be vital in choice of the efficient interference schemes [6]. 
In this study, it has been formed a continuous time model considering immune system 
response of host against bacteria causing infection and the main functions of bacterial 
resistance occuring due to effect of antibiotic. In this context, the aim of proposed model is to 
get the specific circumstances connected on the bacteria growth under the pressure of immune 
cells and antibiotic. 

 

2. Mathematical Model 

It has constituted this study by considering within-host models. Many of existing 
mathematical models, which assume that resistance development as a consequence of 
antibiotic use is in the host, are investigate how antibiotic treatment methods can both cause 
and be focused to avoid the occurrence of antibiotic resistance [7,8]. In addition that, the 
influences of the hosts immune system response due to the bacterial infection are often either 
ignored or presumed at a constant rate. In here, it has been generated the mathematical model 
comprising the effects of cell-mediated immune response. Also, treatment forms containing 
antibiotic have implemented in most bacterial infections. The effects of antibiotic therapy by 
using Holling function is examined. In this sense, it has been investigated the changes in 
concentrations of the bacteria and immune cells in a host receiving antibiotic treatment to 
fight off infectious bacteria by mathematical modelling.  
It has presumed that 𝑆 𝑡  and 𝑅 𝑡  symbolize the population sizes of susceptible and resistant 
bacteria to antibiotic at time 𝑡, respectively. In addition that, it has assumed that 𝐵 𝑡  and 
𝐴 𝑡  denote the population sizes of immune cells and the antibiotic concentration at time 𝑡, 
respectively. By aforementioned assumptions, it has obtained the following system of four 
ODE: 

 

 

&'
&(
= 𝛽'𝑆 1 − '-.

/
− 𝜂𝑆𝐵 − 𝑆 12345

167-5
− 𝜇𝑆𝐴 − 𝜎𝑆𝑅

&.
&(
= 𝛽.𝑅 1 − '-.

/
− 𝜂𝑅𝐵 + 𝜇𝑆𝐴 + 𝜎𝑆𝑅

&;
&(
= 𝛽;𝐵 1 − ;

<
− 𝜆𝐵 𝑆 + 𝑅

&5
&(
= −𝛼𝐴

 (1) 

 
where 𝑆 ≡ 𝑆 𝑡 , 𝑅 ≡ 𝑅 𝑡 , 𝐵 ≡ 𝐵 𝑡  and 𝐴 ≡ 𝐴 𝑡  and the system (1) has to be finished 
with positive initial conditions 𝑆 𝑡@ = 𝑆@ , 𝑅 𝑡@ = 𝑅@ , 𝐵 𝑡@ = 𝐵@  and 𝐴 𝑡@ = 𝐴@ . In 
addition, the expressions of these parameters are as follows: it is presumed that bacteria have 
a logistic growth rule and its the carrying capacity is 𝑇. The parameters 𝛽'  and 𝛽.  are the 
growth rate of susceptible and resistant bacteria, respectively. Specific mutations emerging 
resistance to chemical control often include an inherent fitness cost which may be outcomed 
through reduced reproductive capacity and/or competitive ability [6]. Therefore, it is 

 

 𝛽' > 𝛽. (2) 
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In the same mind in the bacteria growth, immune cells produce by logistic growth rule, and 
so, they are recruited to the site of infection at rate 𝛽; and its carrying capacity is 𝛬 [9,10]. 
Immune cells are lost through pathogen-induced apoptosis (at rate 𝜆). In the presence of the 
pathogen, this is biological meaningful when proliferation of immune cells is considered. 
These interacts among bacteria, immune cells and antibiotic have depicted a generalised 
mathematical model of a local bacterial infection, such as wound infection or tuberculosis. 
The above scenario related to the parameters used in the model (1) has been graphically 
described in Fig.1. 

 

 

Fig.1. In the model (1), schematic representation of the main interactions involved in an infection 
treated by antibiotics with S (antibiotic-susceptible bacteria), R (antibiotic-resistant bacteria), B 

(immune cells, e.g. phagocytes or B cells), A (antibiotic concentration) 

 

It is assumed that antibiotic has administered in dose 𝛼 [11,12]. Through the administration of 
the antibiotic, a number of resistant bacteria to this antibiotic can emerge due to mutations of 
susceptible bacteria exposed to such antibiotic and this case is modelled by 𝜇𝑆𝐴 where the 
mutation rate of susceptible bacteria due to exposure to antibiotic is 𝜇. In addition that, the 
most common form of resistance acquisition to antibiotic is the conjugation including the 
transfer of genes between susceptible and resistant bacteria [13,14]. Since this transfer occurs 
between adjacent bacteria in a well mixed population [15,16], we have represented that this 
interaction through mass action kinetics with a conjugation rate, 𝜎, being proportional to the 
levels of susceptible and resistant bacteria to antibiotic in the population [17,18]. 

Moreover, bacteria have per capita rates of death due to immune cells response of host, and so 
this rate in (1) is 𝜂. In addition that, susceptible bacteria die due to the antibiotic effect. It has 
supposed that the effect of the antibiotic on susceptible bacteria is modelled by using a 
saturating response. This response is 12345

167-5
 where 𝐸EFG and 𝐸H@ are the maximum killing rate 

and the antibiotic concentration needed for half maximum effect, respectively [11,17,19,20]. 
For the parameters used in the model, it has satisfied 
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 𝛽', 𝛽., 𝛽;, 𝑇, 𝛬, 𝜇, 𝜂, 𝐸EFG, 𝐸H@, 𝜎, 𝜆, 𝛼 > 0. (3) 
For the ease analyze of the model (1), it has changed the variables as folows 

 

 𝑠 = '
/
, 𝑟 = .

/
, 𝑏 = ;

<
, 𝑎 = 5

PQ
R

. (4) 

 

By (4), the model (1) transforms to following system:  

 

 

&S
&(
= 𝜂 𝑘U𝑠 1 − 𝑠 + 𝑟 − 𝑏𝑠 − 1234

167V-WF
+ 1 𝑎𝑠 − 𝑘X𝑠𝑟

&Y
&(
= 𝜂 𝑘Z𝑟 1 − 𝑠 + 𝑟 − 𝑏𝑟 + 𝑎𝑠 + 𝑘X𝑠𝑟

&[
&(
= 𝛽;𝑏 1 − 𝑏 − 𝑘\ 𝑠 + 𝑟

&F
&(
= −𝛼𝑎

 (5) 

 

where 

 

 
]^
W<
= 𝑘U,

]_
W<
= 𝑘Z,

`/
]a
= 𝑘\,

b/
W<
= 𝑘X, 	𝜂𝛬 = 𝜂,

𝑘U, 𝑘Z, 𝑘\, 𝑘X, 𝜂 > 0
 (6) 

 

Moreover, it is obtained  

 

 𝑘U > 𝑘Z (7) 
 

by (2) and (6). The studied region as biological is given by the set 

 

 𝛺 = 𝑠, 𝑟, 𝑏, 𝑎 ∈ 𝑅X: 0 ≤ 𝑠, 𝑟, 0 ≤ 𝑠 + 𝑟 ≤ 1, 0 ≤ 𝑏 ≤ 1, 0 ≤ 𝑎 ≤ 𝑎(0) .	 (8) 
 

where 𝑎(0) is positive initial condition of 𝑎. 

Proposition 2.1. The region 𝛺 definiting in (8) is positively invariant for the system (5). 
Proof: From the first and second equations in the system (5), it is 

 

 &S
&(
+ &Y

&(
= 𝑘U𝑠 + 𝑘Z𝑟 𝜂 1 − 𝑠 + 𝑟 − 𝑏𝜂 𝑠 + 𝑟 − 𝑎𝑠 W1234

167V-WF
 (9) 
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Considering the region 𝛺, it has reached the following inequality; 

 

 & S-Y
&(

≤ 𝑘U𝜂 𝑠 + 𝑟 1 − 𝑠 + 𝑟 . (10) 
 

By the solution according to 𝑠 + 𝑟  of inequality (10), it has followed that 0 ≤ 𝑠 + 𝑟 ≤ 1 for 
all 𝑡 ≥ 0. In the same mind, we have 

 

 &[
&(
≤ 𝛽;𝑏 1 − 𝑏  (11) 

 

from third equation in system (5). Therefore, it has obtained 0 ≤ 𝑏 ≤ 1 for all 𝑡 ≥ 0 by (11). 

Furthermore, the solution of the last equations of system (5) is 

 

 𝑎 𝑡 = 𝑎(0)𝑒mn( (12) 
 

with positive initial conditions, 𝑎(0). From (12), it is obtained that 0 ≤ 𝑎 ≤ 𝑎(0) for all 𝑡 ≥
0. Let consider the vector field of the system (5) limited to the boundary of 𝛺. This field does 
not includes a point at the exterior of it. Thereby, the solutions starting there is in the region 𝛺 
for all 𝑡 ≥ 0 and these solutions have biological meaning. 

 

3. Qualitative Analysis of System (5) 

In here, the equilibrium points of system (5) is founded. Lastly, the analyze of both the local 
stability and global stability of these equilibrium points is done. 

3.1. Equilibrium Points  

We have accepted that the general terms of equilibria contained in 𝛺 of the system (5) show 
as 𝐸o = 𝑠, 𝑟, 𝑏, 𝑎  for 𝑗 = 1,2, … ,6. 

Proposition 3.1. The system (5) always has the infection-free equilibrium points 𝐸@ =
0,0,0,0  and 𝐸U = 0,0,1,0 , and other points 𝐸Z = 0,1,0,0  and 𝐸\ = 1,0,0,0 . If 𝑘\ <
1 < 𝑘Z or 𝑘Z < 1 < 𝑘\, then 𝐸X = 0, tumU

tumtv
, tu Umtv
tumtv

, 0  exists.  Likewise, when 𝑘\ < 1 <

𝑘U 	or 𝑘U < 1 < 𝑘\ , then 𝐸H =
twmU
twmtv

, 0, tw Umtv
twmtv

, 0
 
reveals in 𝛺 . Moreover, if 𝑘Z <

Umtv twmtu
tx

+ 1 < 𝑚𝑖𝑛 𝑘U,
twmtu
tx

+ 1 , then 𝐸| =
U
tx
−

tu-
}v
}x

twmtu

twmtu-tx
,
tw-

}v
}x

twmtu

twmtu-tx
− U

tx
, 1 −

𝑘\
twmtu

twmtu-tx
, 0  exists as another equilibrium points. 
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Proof: The equilibrium points the system (5) in 𝛺 are obtained by solving the following 
system: 

 

 

𝜂𝑠 𝑘U 1 − 𝑠 + 𝑟 − 𝑏 − 1234
167V-WF

+ 1 𝑎 − 𝑘X𝑟 = 0

𝜂𝑟 𝑘Z 1 − 𝑠 + 𝑟 − 𝑏 + 𝑎 S
Y
+ 𝑘X𝑠 = 0

𝛽;𝑏 1 − 𝑏 − 𝑘\ 𝑠 + 𝑟 = 0
−𝛼𝑎 = 0.

 (13) 

 

From the last equation of system (13), we have 𝑎 = 0  for all of the equilibrium points. 
Therefore, (13) transforms to 

 

 
𝑠 𝑘U 1 − 𝑠 + 𝑟 − 𝑏 − 𝑘X𝑟 = 0
𝑟 𝑘Z 1 − 𝑠 + 𝑟 − 𝑏 + 𝑘X𝑠 = 0
𝑏 1 − 𝑏 − 𝑘\ 𝑠 + 𝑟 = 0.

 (14) 

 

By solving (14), it is obtained the equilibrium points following: 

 

 

𝐸~ = U
mtw-tumtx

𝑘Z, −
U

mtw-tumtx
𝑘U, 0,0 ,

𝐸@ = 0,0,0,0 , 𝐸U = 0,0,1,0 , 𝐸Z = 0,1,0,0 , 𝐸\ = 1,0,0,0 ,
𝐸X = 0, tumU

tumtv
, tu Umtv
tumtv

, 0 , 𝐸H =
twmU
twmtv

, 0, tw Umtv
twmtv

, 0 ,

𝐸| =
U
tx
−

tu-
}v
}x

twmtu

twmtu-tx
,
tw-

}v
}x

twmtu

twmtu-tx
− U

tx
, 1 − 𝑘\

twmtu
twmtu-tx

, 0 .

 (15) 

 

Altought the equilibrium points 𝐸@ ,𝐸U ,𝐸Z  and 𝐸\ , on the orijin, 𝑏 -axis, 𝑟-axis and 𝑠-axis 
respectively, always exist in 𝛺 , the equilibrium point 𝐸~  in which signs of 𝑠  and 𝑟  are 
opposite due to (6), is not biological meaning. Thereby, 𝐸~ is not in 𝛺. If 0 < tumU

tumtv
< 1 and 

0 < tu Umtv
tumtv

< 1, that is, 𝑘\ < 1 < 𝑘Z or 𝑘Z < 1 < 𝑘\, then an interior planar equilibrium 𝐸X 

occuring in the 	𝑟 − 𝑏  plane exists in 𝛺 . In the same mind, when 0 < twmU
twmtv

< 1  and 0 <
tw Umtv
twmtv

< 1 , that is, 𝑘\ < 1 < 𝑘U  or 𝑘U < 1 < 𝑘\ , 𝐸H  occurs in the 𝑠 − 𝑏  plane in 𝛺 . 

Moreover, if 0 < 1 − tv twmtu
twmtu-tx

< 1 , 0 < U
tx
−

tu-
}v
}x

twmtu

twmtu-tx
< 1  and 0 <

tw-
}v
}x

twmtu

twmtu-tx
− U

tx
<

1 , that is, 	𝑘Z <
Umtv twmtu

tx
+ 1 < 𝑚𝑖𝑛 𝑘U,

twmtu
tx

+ 1 , then 𝐸| , the interior equilibrium 
occuring in the 𝑠 − 𝑟 − 𝑏 plane, exists in 𝛺. 
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In table 1, proposition 3.1 is summarized. 

 

Table 1. Biological meaning conditions for the equilibrium points founded in proposition 3.1. 

The Equilibrium Point The Biological Existence Condition 

𝐸@ = 0,0,0,0  Always exists 

𝐸U = 0,0,1,0  Always exists 

𝐸Z = 0,1,0,0  Always exists 

𝐸\ = 1,0,0,0  Always exists 

𝐸X = 0,
𝑘Z − 1
𝑘Z − 𝑘\

,
𝑘Z 1 − 𝑘\
𝑘Z − 𝑘\

, 0  𝑘\ < 1 < 𝑘Z		or		𝑘Z < 1 < 𝑘\ 

𝐸H =
𝑘U − 1
𝑘U − 𝑘\

, 0,
𝑘U 1 − 𝑘\
𝑘U − 𝑘\

, 0  𝑘\ < 1 < 𝑘U		or		𝑘U < 1 < 𝑘\ 

𝐸| =
1
𝑘X
−
𝑘Z +

tv
tx

𝑘U − 𝑘Z
𝑘U − 𝑘Z + 𝑘X

,
𝑘U +

tv
tx

𝑘U − 𝑘Z
𝑘U − 𝑘Z + 𝑘X

−
1
𝑘X
, 1 − 𝑘\

𝑘U − 𝑘Z
𝑘U − 𝑘Z + 𝑘X

, 0  

𝑘Z <
1 − 𝑘\ 𝑘U − 𝑘Z

𝑘X
+ 1

< 𝑚𝑖𝑛 𝑘U,
𝑘U − 𝑘Z
𝑘X

+ 1  

 

3.2. The Analysis of Locally Asymtotically Stability of Equilibrium Points  

Theorem 3.1. Let &�
&(
= 𝐹 𝑋  as a nonlinear first-order autonomous system with its 

equilibrium point 𝑋. In addition that, it is assumed that the Jacobian matrix of 𝐹 evaluated at 
𝑋 is 𝐽 𝑋 .  If the characteristic equation of 𝐽 𝑋 , 

 

𝜆� + 𝑎U𝜆�mU + 𝑎Z𝜆�mZ+. . . +𝑎�mU𝜆 + 𝑎� = 0, 

 

meets the Routh-Hurwitz criteria, that is, the determinants of all of the Hurwitz matrices are 
positive, then 𝑋  is locally asimptotically stable. If the determinants of the some Hurwitz 
matrices are negative, then 𝑋 is unstable point [21].	In this sense, the Routh-Hurwitz criteria 
for polynomial of degree 𝑛 = 2, 3, 4	 and 5  of the above characteristic equation are 
summarized as following : 
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𝑛 = 2:		𝑎U, 𝑎Z > 0,
𝑛 = 3:		𝑎U, 𝑎\ > 0		and		𝑎U𝑎Z > 𝑎\,
𝑛 = 4:		𝑎U, 𝑎\, 𝑎X > 0		and		𝑎U𝑎Z𝑎\ > 𝑎\Z + 𝑎UZ𝑎X,
𝑛 = 5:		𝑎U, 𝑎Z, 𝑎\, 𝑎X, 𝑎H > 0, 𝑎U𝑎Z𝑎\ > 𝑎\Z + 𝑎UZ𝑎X
														and	 𝑎U𝑎X − 𝑎H 𝑎U𝑎Z𝑎\ − 𝑎\Z − 𝑎UZ𝑎X > 𝑎H 𝑎U𝑎Z − 𝑎\ Z + 𝑎U𝑎HZ.

 

 

Locally asimptotically stability (LAS) conditions of equilibrium points in the Table 1 have 
examined in the following proposition. 

Proposition 3.2. For the equilibrium points in proposition 3.1, the followings are provided. 

(i) 𝐸@ and 𝐸\  are always unstable points. 
(ii) If 𝑘U < 1, then 𝐸U is LAS. 
(iii) If 1 < 𝑘\, then 𝐸Z is LAS.  
(iv) Let 𝑘\ < 1 < 𝑘Z or 𝑘Z < 1 < 𝑘\. If 1 < Umtv twmtu

tx
+ 1 < 𝑘Z, then 𝐸X is LAS. 

(v) Let 𝑘\ < 1 < 𝑘U or 𝑘U < 1 < 𝑘\. If 1 < 𝑘U <
Umtv twmtu

tx
+ 1, then 𝐸H is LAS. 

(vi) Let 𝑘Z <
Umtv twmtu

tx
+ 1 < 𝑚𝑖𝑛 𝑘U,

twmtu
tx

+ 1 . If 𝑘\ < 1, then 𝐸| is LAS. 

Proof: For the stability analysis, the functions of the right side of the system (5) are adjusted 
as the following: 

 

 

𝜑U 𝑠, 𝑟, 𝑏, 𝑎 = 𝜂 𝑘U𝑠 1 − 𝑠 + 𝑟 − 𝑏𝑠 − 1234
167V-WF

+ 1 𝑎𝑠 − 𝑘X𝑠𝑟

𝜑Z 𝑠, 𝑟, 𝑏, 𝑎 = 𝜂 𝑘Z𝑟 1 − 𝑠 + 𝑟 − 𝑏𝑟 + 𝑎𝑠 + 𝑘X𝑠𝑟
𝜑\ 𝑠, 𝑟, 𝑏, 𝑎 = 𝛽;𝑏 1 − 𝑏 − 𝑘\ 𝑠 + 𝑟
𝜑X 𝑠, 𝑟, 𝑏, 𝑎 = −𝛼𝑎

 (16) 

 

That jacobian matrix obtained from (16) is 

 

 𝐽 =

𝜂
𝑘U 1 − 𝑠 + 𝑟 − 𝑘U𝑠 − 𝑏

−𝑘X𝑟 −
1234

167V-WF
+ 1 𝑎

−𝜂𝑠 𝑘U + 𝑘X −𝜂𝑠 −𝜂𝑠 1234167V
167V-WF u + 1

𝜂 𝑎 + 𝑘X𝑟 − 𝑘Z𝑟 𝜂 𝑘Z 1 − 𝑠 + 𝑟
−𝑏 + 𝑘X𝑠 − 𝑘Z𝑟

−𝜂𝑟 𝜂𝑠

−𝑘\𝑏𝛽; −𝑘\𝑏𝛽; 𝛽;
1 − 2𝑏

−𝑘\ 𝑠 + 𝑟
0

0 0 0 −𝛼

 (17) 

 

Since 𝑎 = 0 in all equilibria of the system (5), the jacobian matrix showed in (17) can be 
rewritten as follows: 
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 𝐽 =

𝜂 𝑘U 1 − 𝑠 + 𝑟
−𝑘U𝑠 − 𝑏 − 𝑘X𝑟

−𝜂𝑠 𝑘U + 𝑘X −𝜂𝑠 −𝜂𝑠 1234
167V

+ 1

𝜂𝑟 𝑘X − 𝑘Z 𝜂 𝑘Z 1 − 𝑠 + 𝑟
−𝑏 + 𝑘X𝑠 − 𝑘Z𝑟

−𝜂𝑟 𝜂𝑠

−𝑘\𝑏𝛽; −𝑘\𝑏𝛽; 𝛽; 1 − 2𝑏−𝑘\ 𝑠 + 𝑟 0
0 0 0 −𝛼

 (18) 

 

For ease of examination, we have assumed that the 𝜏-th eigenvalue of the equilibrium point 
𝐸t is displayed as 𝜆t,� for 𝜏 = 1,2,3,4 and 𝑘 = 0,1,2, … ,6. 

(i) For 𝐸@,  the jacobian matrix evaluated in (18) is 𝐽 𝐸@ =

𝜂𝑘U 0 0 0
0 𝜂𝑘Z 0 0
0 0 𝛽; 0
0 0 0 −𝛼

. 

Therefore, the eigenvalues are obtained as 𝜆@,U = 𝜂𝑘U , 𝜆@,Z = 𝜂𝑘Z , 𝜆@,\ = 𝛽;  and 
𝜆@,X = −𝛼. From Theorem 3.1, 𝐸@ is unstable point, since all of the eigenvalues have 
not lie in the left half of the complex plane due to (6). 
In the same mind, the jacobian matrix for 𝐸\  is 𝐽 𝐸\ =
−𝜂𝑘U −𝜂 𝑘U + 𝑘X −𝜂 −𝜂 1234

167V
+ 1

0 𝜂𝑘X 0 𝜂
0 0 𝛽; 1 − 𝑘\ 0
0 0 0 −𝛼

, and so,  the eigenvalues are  

𝜆\,U = −𝜂𝑘U , 𝜆\,Z = 𝜂𝑘X , 𝜆\,\ = 𝛽; 1 − 𝑘\  ve 𝜆\,X = −𝛼 . All of these is not 
negative due to (6).  From Theorem 3.1, it can be seen that 𝐸\ is unstable point. 

(ii) Jacobian matrix evaluated at the equilibrium point 𝐸U  is 𝐽 𝐸U =
𝜂 𝑘U − 1 0 0 0
0 𝜂 𝑘Z − 1 0 0
−𝑘\𝛽; −𝑘\𝛽; −𝛽; 0
0 0 0 −𝛼

. Therefore, eigenvalues are 𝜆U,U = 𝜂 𝑘U − 1 , 

𝜆U,Z = 𝜂 𝑘Z − 1 , 𝜆U,\ = −𝛽;  and 𝜆U,X = −𝛼 . By (6), 𝜆U,\  and 𝜆U,X  are negative. If 
𝑘U < 1 (already 𝑘U > 𝑘Z in (7)), then 𝜆U,U and 𝜆U,Z are negative from (6). Considering 
Theorem 3.1, if 𝑘U < 1, then 𝐸U is LAS. 

(iii) Jacobian matrix in (18) for 𝐸Z is 𝐽 𝐸Z =

−𝜂𝑘X 0 0 0
𝜂 𝑘X − 𝑘Z −𝜂𝑘Z −𝜂 0
0 0 𝛽; 1 − 𝑘\ 0
0 0 0 −𝛼

. 

So, the eigenvalues are founded as 𝜆Z,U = −𝜂𝑘X, 𝜆Z,Z = −𝜂𝑘Z, 𝜆Z,\ = 𝛽; 1 − 𝑘\  and 
𝜆Z,X = −𝛼 . Due to (6),  𝜆Z,U, 𝜆Z,Z  and  𝜆Z,X  are negative. Moreover, when 1 < 𝑘\ , 
𝜆Z,\ < 0 (already 𝛽; > 0 in (3) and 𝜂 > 0 in (6)). By Theorem 3.1, if 1 < 𝑘\, then 𝐸Z 
is LAS. 

(iv) Let 
 

 𝑘\ < 1 < 𝑘Z	or	𝑘Z < 1 < 𝑘\. (19) 
 
In this case,  𝐸X is in 𝛺. Evaluating 𝐸X in 	𝐽, we have 
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 𝐽 𝐸X =

𝜂 Umtv twmtu mtx tumU
tumtv

0 0 0

−𝜂 tumtx tumU
tumtv

−𝜂 tu tumU
tumtv

−𝜂 tumU
tumtv

0

−𝛽;
tvtu Umtv
tumtv

−𝛽;
tvtu Umtv
tumtv

−𝛽;
tu Umtv
tumtv

0

0 0 0 −𝛼

. (20) 

 
 
That two eigenvalues obtained from (20) are 𝜆X,U = 𝜂 Umtv twmtu mtx tumU

tumtv
 and 

𝜆X,Z = −𝛼. If  
 

 Umtv twmtu mtx tumU
tumtv

< 0, (21) 
 
then 𝜆X,U is negative. Also, 𝜆X,Z is negative by (3). The other eigenvalues are founded 
from the following matrix;  
 

 𝐽; 1x =
−𝜂 tu tumU

tumtv
−𝜂 tumU

tumtv

−𝛽;
tvtu Umtv
tumtv

−𝛽;
tu Umtv
tumtv

 (22) 

 
where 𝐽; 1x  is the block matrix of 𝐽 𝐸X . Hence, characteristic equation of (22) is  
 

 𝜆Z + 𝜆 𝜂 𝑘Z − 1 + 𝛽; 1 − 𝑘\
tu

tumtv
+ 𝜂 𝑘Z − 1 𝛽; 1 − 𝑘\

tu
tumtv

= 0. (23) 
 
from (19), let  
 

 𝑘Z > 1 > 𝑘\. (24) 
 
In case of (24), all of the roots of polynomial in (23) are negative or have negative real 
parts by Theorem 3.1 (𝑛 = 2), that is, 𝑅𝑒 𝜆X,\, 𝜆X,X < 0. Thus, if (21) and (24) are 
held, that is,  1 < Umtv twmtu

tx
+ 1 < 𝑘Z, then all of the eigenvalues evaluated at 𝐸X 

are negative or have negative reel parts. In this respect, it is LAS. 
(v) In analogy to (iv), if 1 < 𝑘U <

Umtv twmtu
tx

+ 1, then 𝐸H is LAS. 
(vi) Lastly, when 

 

 𝑘Z <
Umtv twmtu

tx
+ 1 < 𝑚𝑖𝑛 𝑘U,

twmtu
tx

+ 1 . (25) 
 
𝐸| is revealed in 𝛺. That eigenvalues of jacobian matrix evaluated at 𝐸| are 𝜆|,U =
−𝛼, 𝜆|,Z, 𝜆|,\  and 𝜆|,X . The 𝜆|,U  is negative due to (3). Also,  𝜆|,Z ,	𝜆|,\  and 𝜆|,X  are 
founded from following block matrix; 
 



B. Daşbaşı, İ. Öztürk 
 

	
	

103	

 𝐽; 1� =
−𝜂𝑘U𝑠 −𝜂𝑠 𝑘U + 𝑘X −𝜂𝑠
𝑟𝜂 𝑘X − 𝑘Z −𝜂𝑘Z𝑟 −𝜂𝑟
−𝑘\𝑏𝛽; −𝑘\𝑏𝛽; −𝑏𝛽;

 (26) 

 
where 
 

 
𝐸| = 𝑠, 𝑟, 𝑏, 𝑎 = U

tx
−

tu-
}v
}x

twmtu

twmtu-tx
,
tw-

}v
}x

twmtu

twmtu-tx
− U

tx
, 1 − tv twmtu

twmtu-tx
, 0 ,

𝑠, 𝑟, 𝑏 > 0.
 (27) 

 
Characteristic equation of (26) is obtained as follows: 
 

 𝜆\ + 𝑃U𝜆Z + 𝑃Z𝜆 + 𝑃\ = 0 (28) 
 
where 
 

 

𝑃U = 𝜂 𝑘U𝑠 + 𝑘Z𝑟 + 𝑏𝛽;
𝑃Z = 𝜂 𝜂𝑠𝑟𝑘X 𝑘U − 𝑘Z + 𝑘X + 𝑏𝛽; 𝑘U𝑠 + 𝑘Z𝑟 − 𝑘\ 𝑠 + 𝑟

𝑃\ = 𝛽;𝑏𝜂Z𝑠𝑟𝑎X 𝑘U − 𝑘Z + 𝑘X

 (29) 

 
In (29), 
 

 𝑃U > 0 (30) 
 
due to (3), (6) and (27) and 
 

 𝑃\ > 0 (31) 
 

due to (3), (6), (7) and (27). In addition that, it is 
 

𝑃U𝑃Z − 𝑃\ =
𝜂 𝑘U𝑠 + 𝑘Z𝑟 +

𝑏𝛽;

𝑘U − 𝑘Z + 𝑘X 𝑘X𝑟𝜂𝑠 +
𝑘U𝑠 + 𝑘Z𝑟 − 𝑘\ 𝑠 + 𝑟 𝑏𝛽;

− 𝑘U − 𝑘Z + 𝑘X 𝑘X𝜂𝜂𝑠𝑟𝑏𝛽;, 

 
and so, 
 

 𝑃U𝑃Z − 𝑃\ = 𝜂 𝑘U𝑠 + 𝑘Z𝑟
𝑘U − 𝑘Z + 𝑘X 𝑘X𝑟𝜂𝑠 +

𝑘U𝑠 + 𝑘Z𝑟 − 𝑘\ 𝑠 + 𝑟 𝑏𝛽;
+ 𝑘U𝑠 + 𝑘Z𝑟 −

𝑘\ 𝑠 + 𝑟
𝑏𝛽;𝑏𝛽;𝜂 (32) 

 
By (27), the expression 𝑘U𝑠 + 𝑘Z𝑟 − 𝑘\ 𝑠 + 𝑟  in (32) can be writing as 
 

= 𝑘U −
𝑘Z

𝑘U − 𝑘Z + 𝑘X
+
1
𝑘X
𝑏 + 𝑘Z

𝑘U
𝑘U − 𝑘Z + 𝑘X

−
1
𝑘X
𝑏 − 𝑘\

𝑘U − 𝑘Z
𝑘U − 𝑘Z + 𝑘X
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= 𝑘U − 𝑘Z
U
tx
𝑏 − 𝑘\

U
twmtu-tx

= twmtu
tx

1 − twmtu tv
twmtu-tx

− tvtx
twmtu-tx

. 

 
and so,  
 

 𝑘U𝑠 + 𝑘Z𝑟 − 𝑘\ 𝑠 + 𝑟 = twmtu
tx

1 − 𝑘\  (33) 
 
(already 𝑘U > 𝑘Z due to (7)). If 
 

 𝑘\ < 1, (34) 
 
then 𝑘U𝑠 + 𝑘Z𝑟 − 𝑘\ 𝑠 + 𝑟 > 0, that is, 
 

 𝑃U𝑃Z − 𝑃\ > 0 (35) 
 
By considering (30), (31) and (35), if (25) and (34) are satisfied, then it is 

 

 𝑅𝑒 𝜆|,Z, 𝜆|,\, 𝜆|,X < 0 (36) 
 
from Theorem 3.1 (𝑛 = 3). In this respect, we have that 𝐸| is LAS. 
 

In table 2, proposition 3.2 are summarized. 

 

Table 2. The LAS conditions of the equilibria of system (5). 

Equilibrium Points LAS Conditions 

𝐸U = 0,0,1,0  𝑘U, 𝑘Z < 1 

𝐸Z = 0,1,0,0  1 < 𝑘\ 

𝐸X = 0,
𝑘Z − 1
𝑘Z − 𝑘\

,
𝑘Z 1 − 𝑘\
𝑘Z − 𝑘\

, 0  1 <
1 − 𝑘\ 𝑘U − 𝑘Z

𝑘X
+ 1 < 𝑘Z < 𝑘U  

𝐸H =
𝑘U − 1
𝑘U − 𝑘\

, 0,
𝑘U 1 − 𝑘\
𝑘U − 𝑘\

, 0  1 < 𝑘U <
1 − 𝑘\ 𝑘U − 𝑘Z

𝑘X
+ 1 

𝐸| =
1
𝑘X
−
𝑘Z +

tv
tx

𝑘U − 𝑘Z
𝑘U − 𝑘Z + 𝑘X

,
𝑘U +

tv
tx

𝑘U − 𝑘Z
𝑘U − 𝑘Z + 𝑘X

−
1
𝑘X
, 1 − 𝑘\

𝑘U − 𝑘Z
𝑘U − 𝑘Z + 𝑘X

, 0  

𝑘\ < 1		and		𝑘Z <
1 − 𝑘\ 𝑘U − 𝑘Z

𝑘X
+ 1

< 𝑚𝑖𝑛 𝑘U,
𝑘U − 𝑘Z
𝑘X

+ 1  
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3.3. The Analysis of Globally Asymptotically Stability of Equilibrium Points  

In here, it has been focused on globally asymtotically stability (GAS) of equilibrium points in 
Table 2. Let 

 

 𝑘U < 1 < 𝑘\ (37) 
 

(already 𝑘Z < 𝑘U  in (7)). When inequality (37) is satisfied, it is clear that the equilibrium 
points 𝐸U = 0,0,1,0  and 𝐸Z = 0,1,0,0  are LAS in the same sub-region of 𝛺. Description 
of this case is shown in Fig.2. For the variables 𝑠 = 𝑎 = 0 and the parameters 𝛽; = 𝜂 = 1, 
𝑘\ = 2 𝑘Z =

U
\
< 𝑘U = 1/2 in the system (5), Fig.2 is plotted via the program pplane.jar. In 

here, the points 0,1  and 1,0  in plane represent the equilibrium points 𝐸U  and 𝐸Z 
respectively. Therefore, they are LAS. 

 

 

Fig.2. In case of 𝑠 = 𝑎 = 0, 𝛽; = 𝜂 = 1 , 𝑘\ = 2 𝑘Z =
U
\
< 𝑘U = 1/2 in system (5), The LAS of the 

equilibrium points 𝐸U and 𝐸Z. 

 

Except for this inequality is held, there is no same sub-region of 𝛺 where at least two of the 
equilibrium points 𝐸U, 𝐸Z, 𝐸X, 𝐸H and 𝐸| are LAS. In this section, it has been assumed that 
inequality (37) is not provided because of this reason. 

Proposition 3.3. Let us denote by 𝛤� the LAS region of the equilibrium point 𝐸� in 𝛺 for 𝑖 =
1,2,4,5,6. Then 𝛤� ∩ 𝛤o = ∅ for 𝑖 ≠ 𝑗 and 𝑗 = 1,2,4,5,6. 

Proof: This situation is evidently in Table 2. 

Proposition 3.4. It is assumed that 𝐸U is LAS. In this case, it is GAS. Similarly, if  𝐸Z is LAS, 
then it is GAS. 



B. Daşbaşı, İ. Öztürk 
 

	
	

106	

Proof: In the system (5), each variable in absence of the others has logistic form. Therefore, 
the GAS analysis of the equilibrium points 𝐸U and 𝐸Z can be examined in a similar manner to 
each other. 
For 𝐸U, it is investigated as the following. Let us consider the region 𝛺U = 𝑏 ∈ 𝑅:	0 ≤ 𝑏 ≤
1  given by  
 
 &[

&(
= 𝛽;𝑏 1 − 𝑏 , (38) 

 
where 𝛽; > 0 is the intrinsic growth rate of immune cells and 𝑏 = 1 is the carrying capacity 
of immune cells. There are two equilibria  𝑏 = 0,1 . If (38) is solved by separation of 
itsvariables, then it is obtained that 𝑏 𝑡 = [ @

[ @ - Um[ @ ���a�
. It can be seen lim

(→�
𝑏 𝑡 = 1. 

Thus, 𝑏 = 1 (namely, 𝐸U) is GAS. 
Proposition 3.5. It is assumed that 𝐸X is LAS. Then it is GAS. Similarly, if  𝐸H is LAS, then it 
is GAS. 
Proof: Since 𝐸X and 𝐸H are present in 𝑅Z, we have benefited from Bendixon-Dulac criteria for 
analysis of GAS.  

Firstly, let us examine the 𝐸X  in the region 𝛺Z = 𝑟, 𝑏 ∈ 𝑅Z: 0 < 𝑟 < 1, 0 < 𝑏 < 1 . 
Moreover, let 𝐻 𝑟, 𝑏 = U

Y[
. It is obviously 𝐻 𝑟, 𝑏 > 0 and functions 𝐹U 𝑟, 𝑏  and 𝐹Z 𝑟, 𝑏  

obtained from system (5) are denote as 

 

 
𝐹U 𝑟, 𝑏 = 𝜂𝑟 𝑘Z 1 − 𝑟 − 𝑏
𝐹Z 𝑟, 𝑏 = 𝛽;𝑏 1 − 𝑏 − 𝑘\𝑟 .

 (39) 

 
Considering 𝐻 𝑟, 𝑏 , divergence obtained from these functions in (39) is founded as 
 
𝛥 𝑟, 𝑏 = ¢

¢Y
𝐹U𝐻 + ¢

¢[
𝐹Z𝐻 = ¢

¢Y
𝜂𝑟 𝑘Z 1 − 𝑟 − 𝑏 U

Y[
+ ¢

¢[
𝛽;𝑏 1 − 𝑏 −

𝑘\𝑟
U
Y[

= ¢
¢Y

𝜂 tu UmY m[
[

+ ¢
¢[

𝛽;
Um[ mtvY

Y
, 

 
and so, 
 
 𝛥 𝑟, 𝑏 = − 𝜂 tu

[
+ 𝛽;

U
Y
. (40) 

 
From (3), (6) and (8), the 𝛥 𝑟, 𝑏  in (40) is negative. In this respect, by the Bendixon-Dulac 
criteria, there is not periodic orbit in the 𝑟 − 𝑏 plane. Because 𝐸X is LAS in the above plane 
(namely 𝛺Z and so, 𝛺), it is GAS. In the same way, it can be seen that 𝐸H is GAS. 
Definition 3.1. (LaSalle's extension of the direct method of Lyapunov): The system is of the 
form 

 

 &G£
&(
= 𝑥

.
� = 𝑥�𝐹� 𝑥U, 𝑥Z, . . . , 𝑥� ,				𝑖 = 1,2, . . . , 𝑛 (41) 

 
where 𝑥�  is the density of the 𝑖 − 𝑡ℎ	 species in the community at time 𝑡 . Each 𝐹�  is a 
continuous function from 𝑅-�, the nonnegative cone in 𝑅�, to 𝑅 and is sufficiently smooth to 
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guarantee that initial value problems associated with (41) have unique solutions in the 
population orthant, 𝑅-�. 
Thus, the positive steady-state 𝑥∗ of (41) is a globally asymptotically stable, if 𝐹 𝑥 > 0 for 
all 𝑥 ∈ 0, 𝑥∗  and 𝐹 𝑥 < 0 for all 𝑥 ∈ 𝑥∗,∞  [22].  

Let us consider as 𝐹� 𝑥U, 𝑥Z, . . . , 𝑥� = 𝑞� + 𝑤�t𝑥t,				𝑖 = 1,2, . . . , 𝑛.�
tªU  

here 𝑞�, −𝑤�� are positive constants and 𝑤�t, 𝑖 ≠ 𝑘 are constants with any sign. If we define 
𝑤�t  and 𝑞 = 𝑞U, 𝑞Z, . . . , 𝑞� , then it can be shown that 𝑥∗ = −𝑊mU𝑞(  is a steady-state of 
system. Let us suppose that 𝑥∗ ∈ 𝑅-�  is positive and 𝐶 = 𝑑𝑖𝑎𝑔 𝑐U, 𝑐Z, . . . , 𝑐� . Function 
𝑉 𝑥 = 𝑐��

�ªU 𝑥� − 𝑥�∗ − 𝑥�∗𝑙𝑛
G£
G£
∗  can be used as a Lyapunov function. Clearly, 𝑉 𝑥  

satisfied the conditions 𝑉 𝑥∗ = 0 , 𝑉 𝑥 > 0	for all 𝑥 ∈ 𝑅-� , 𝑥 ≠ 𝑥∗ , 𝑉 𝑥 → ∞  as 𝑥 → ∞ 
and 𝑥 → 0. We have 

 

𝑉
.
𝑥 = 𝑐� 𝑥� − 𝑥�∗

�

�ªU

𝑞� + 𝑤�t𝑥t

�

tªU

= 𝑐� 𝑥� − 𝑥�∗
�

�ªU

𝑤�t 𝑥t − 𝑥t∗
�

tªU

											=
1
2
𝑥 − 𝑥∗ ( 𝐶𝑊 +𝑊(𝐶 𝑥 − 𝑥∗ .

 

 

From LaSalle's extension of the direct method of Lyapunov, we have the following 

Theorem 3.2. The steady-state 𝑥∗ of (41) is GAS, if there exists a positive diagonal matrix 𝐶 
such that 𝐶𝑊 +𝑊(𝐶 is a negative semidefinite and the function  

 

𝑉
.
𝑥 =

1
2
𝑥 − 𝑥∗ ( 𝐶𝑊 +𝑊(𝐶 𝑥 − 𝑥∗  

 

does not vanish identically along a nontrivial solution [21,22]. 

Proposition 3.6. Let 𝐸|  is LAS. If 0 < 4 𝑘U + 𝑘X 𝑘Z − 𝑘X < 𝑘U𝑘Z, 4𝑘\ < 𝑘Z , then it	
 is GAS.  

Proof: When the last equation of system (5) are separated, their solutions approach to 𝑎 = 0. 
Replacing this value in the first three equations of system (5), we have attained that the 
asymptotically equivalent system in the region 

 

 𝛺\ = 𝑠, 𝑟, 𝑏 ∈ 𝑅\: 0 < 𝑠 < 1, 0 < 𝑟 < 1, 0 < 𝑠 + 𝑟 < 1, 0 < 𝑏 < 1 . (42) 
 

given by 
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&S
&(
= 𝑠 𝑘U𝜂 − 𝑘U𝜂𝑠 − 𝑘U + 𝑘X 𝜂𝑟 − 𝜂𝑏

&Y
&(
= 𝑟 𝑘Z𝜂 − 𝑘Z𝜂 − 𝑘X𝜂 𝑠 − 𝑘Z𝜂𝑟 − 𝜂𝑏

&[
&(
= 𝑏 𝛽; − 𝑘\𝛽;𝑠 − 𝑘\𝛽;𝑟 − 𝛽;𝑏 .

 (43) 

 

By Definition 3.1, we have presumed that the Lyapunov function of system (43) definited in 
the region (42) is 

 

 𝑉 𝑥 = 𝑐�\
�ªU 𝑥� − 𝑥�∗ − 𝑥�∗𝑙𝑛

G£
G£
∗  (44) 

 

where each 𝑥�∗ for 𝑖 = 1,2,3 are component at equilibrium point. Derivative of 𝑉 𝑥  in (44) is 

 

 𝑉
.
𝑥 = 𝑐� 𝑥� − 𝑥�∗\

�ªU 𝑞� + 𝑤�t𝑥t\
tªU , (45) 

 

By Theorem 3.2, (45) can be writing as following 

 

 𝑉
.
𝑥 = U

Z
𝑥 − 𝑥∗ ( 𝐶𝑊 +𝑊(𝐶 𝑥 − 𝑥∗  (46) 

 

where 

 

 

𝑥 =
𝑠
𝑟
𝑏
, 𝑥∗ =

𝑠
𝑟
𝑏

, 𝑞 = 𝑘U𝜂 𝑘Z𝜂 𝛽; , 𝐶 =
𝑐U 0 0
0 𝑐Z 0
0 0 𝑐\

𝑊 =
𝑤UU 𝑤UZ 𝑤U\
𝑤ZU 𝑤ZZ 𝑤Z\
𝑤\U 𝑤\Z 𝑤\\

= −
𝑘U𝜂 𝜂 𝑘U + 𝑘X 𝜂
𝜂 𝑘Z − 𝑘X 𝑘Z𝜂 𝜂
𝑘\𝛽; 𝑘\𝛽; 𝛽;

,

 (47) 

 

In addition that, 𝑞U�, −𝑤��  for 𝑖, 𝑘 = 1,2,3 are positive constants, 𝑤�t  for 𝑖 ≠ 𝑘 are constants 
with any sign and 𝐶  is a positive diagonal matrix and 𝑠, 𝑟  and	𝑏 	are in (23). Moreover,  
𝑠
𝑟
𝑏

= 𝑥∗ = −𝑊mU𝑞( such that 𝑑𝑒𝑡𝑊 ≠ 0.  

By (47), it is obtained that 
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 𝐶𝑊 +𝑊(𝐶 = − 𝜂
2𝑐U𝑘U𝜂 𝑐U + 𝑐Z 𝜂 𝑘U + 𝑘X 𝑐U𝜂 + 𝑐\𝑘\𝛽;
𝑐Z 𝑘Z − 𝑘X + 𝑐U 𝑘U + 𝑘X 2𝑐Z𝑘Z𝜂 𝑐Z𝜂 + 𝑐\𝑘\𝛽;
𝑐U𝜂 + 𝑐\𝑘\𝛽; 𝑐Z𝜂 + 𝑐\𝑘\𝛽; 2𝑐\𝛽;

. (48) 

 

If 

 

 𝑘Z > 𝑘X,	 (49) 
 

then the matrix 𝐶𝑊 +𝑊(𝐶 in (48) is negative-definite.   

Moreover, the function 𝑉
.
𝑥  in (46) is 

 

 
𝑉
.
𝑥 = 𝑐U𝑤UU 𝑥U − 𝑥U∗ Z + 𝑐U𝑤UZ + 𝑐Z𝑤ZU 𝑥U − 𝑥U∗ 𝑥Z − 𝑥Z∗

											+𝑐Z𝑤ZZ 𝑥Z − 𝑥Z∗ Z + 𝑐U𝑤U\ + 𝑐\𝑤\U 𝑥U − 𝑥U∗ 𝑥\ − 𝑥\∗

											+ 𝑐Z𝑤Z\ + 𝑐\𝑤\Z 𝑥Z − 𝑥Z∗ 𝑥\ − 𝑥\∗ + 𝑐\𝑤\\ 𝑥\ − 𝑥\∗ Z.
 (50) 

 

(50) can be more clearly written as following 

 

 
𝑉
.
𝑥 = U

Z
𝑐U𝑤UU 𝑥U − 𝑥U∗ Z + 𝑐U𝑤UZ + 𝑐Z𝑤ZU 𝑥U − 𝑥U∗ 𝑥Z − 𝑥Z∗ + U

Z
𝑐Z𝑤ZZ 𝑥Z − 𝑥Z∗ Z

											+ U
Z
𝑐Z𝑤ZZ 𝑥Z − 𝑥Z∗ Z + 𝑐Z𝑤Z\ + 𝑐\𝑤\Z 𝑥Z − 𝑥Z∗ 𝑥\ − 𝑥\∗ + U

Z
𝑐\𝑤\\ 𝑥\ − 𝑥\∗ Z

											+ U
Z
𝑐U𝑤UU 𝑥U − 𝑥U∗ Z + 𝑐U𝑤U\ + 𝑐\𝑤\U 𝑥U − 𝑥U∗ 𝑥\ − 𝑥\∗ + U

Z
𝑐\𝑤\\ 𝑥\ − 𝑥\∗ Z .

 (51) 

 

In this sense, (51) does not vanish identically along a nontrivial solution, if the following 
conditions are met; 

 

 
𝛥U = 𝑐U𝑤UZ + 𝑐Z𝑤ZU Z − 𝑐U𝑐Z𝑤UU𝑤ZZ < 0
𝛥Z = 𝑐Z𝑤Z\ + 𝑐\𝑤\Z Z − 𝑐Z𝑐\𝑤ZZ𝑤\\ < 0
𝛥\ = 𝑐U𝑤U\ + 𝑐\𝑤\U Z − 𝑐U𝑐\𝑤UU𝑤\\ < 0

 (52) 

 

where 𝛥U, 𝛥Z and 𝛥\ are the discriminant during each of the statement (51). If the elements of 
a positive diagonal matrix 𝐶 are selected, for example, as follows 

 

 
𝑐Z =

²ww²uumZ²wu²uw
Z²uwu

𝑐U, 𝑐\ =
²uu²vvmZ²uv²vu

Z²vuu
𝑐Z,

𝑐U =
²ww²vvmZ²vw²wv

Z²wvu
𝑐\, 𝑐\ > 0,

 (53) 

 

then it can be seen that inequalities in (52) have provided. From (52) and (53), we have 



B. Daşbaşı, İ. Öztürk 
 

	
	

110	

 

 
𝛥U = 4𝑤UZ𝑤ZU − 𝑤UU𝑤ZZ < 0
𝛥Z = 4𝑤Z\𝑤\Z − 𝑤ZZ𝑤\\ < 0
𝛥\ = 4𝑤\U𝑤U\ − 𝑤UU𝑤\\ < 0.

 (54) 

 

After the elements of the 𝑊  matrix in (47) have written its places in (54), we have the 
following conditions: 

 

 4 𝑘U + 𝑘X 𝑘Z − 𝑘X < 𝑘U𝑘Z, 4𝑘\ < 𝑘Z. (55) 
 

Therefore, if inequalities (55) is satisfied, the function 𝑉
.
𝑥  does not vanish identically along 

a nontrivial solution. By (49) and (55), if  

 

 0 < 4 𝑘U + 𝑘X 𝑘Z − 𝑘X < 𝑘U𝑘Z, 4𝑘\ < 𝑘Z, (56) 
 

then 𝐸| is GAS. 

In the following discussion, we have demonstrated some of the contributions our 
mathematical modelling to the study of complex problems in host-microbe interactions.  

4. Numerical study 

In our numerical study, the datas of different species of bacteria including Staphylococcus 
aureus, Mycobacterium tuberculosis, Acinetobacter baumannii and E. coli in host have used. 
In this sense, each bacterial species has been evaluated separately in the model. By this study, 
dynamics of interactions among size of the bacteria population, concentration of the antibiotic 
and immune cells in host have examined. The parameter values used for numerical studies are 
given in the following Table 3. 
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Table 3. Interpretation and considered values of the parameters used in (1). Data are deduced from the 
literature (references). 

Parameter Description Unit Value 1 Reference 1 Value 2 Reference 2 Value 3 Reference 3 Value 4 Reference 4 

𝛽' 
Growth rate of 
susceptible 
bacteria 

days−1 24 [23] 0.8 [1] 1.2 
[24] 

0.6 
[25] 

𝛽. Growth rate of 
resistant bacteria days−1 21.6 [26] 0.5 [1] 0.9 Hypothesis 0.4 Hypothesis 

𝛽; Growth rate of 
immune cells days−1 3 [26] 0.6 [27] 0.6 [27] 0.6 [27] 

𝜂 
Rate of bacteria 
destroyed by 
immune cells 

cells−1 
days−1 2.4 10-4 [28] 10-6 Hypothesis 10-6 Hypothesis 10-6 Hypothesis 

𝛬 
Carrying 
capacity of 
immune cells 

cells 1.8 105 [28] 1.8 105 [28] 106 [16] 106 [16] 

𝑇 
Carrying 
capacity of 
bacteria 

cells 109 [23] 109 [29] 108 [30] 107 [31] 

𝛼 

Elimination rate 
of antibiotic 
under distinct 
doses days 

days−1 3.6 [23] 3.6 [23] 3.6 [23] 3.6 [23] 

𝜇 
Mutation rate of 
susceptible 
bacteria due 
antibiotic 

days−1 9.8 10-5 [30] 5.1 10-9 [32] 9 10-6 Hypothesis 9.3 10-6 [33] 

𝜆 
Bacterial 
induced death of 
immune cells 

cells−1 
days−1 6 10−6 [28] 6 10−6 [28] 6 10−6 [28] 6 10−6 [28] 

𝜎 Conjugation rate 
constant days−1 10−5 [26] 10-7 Hypothesis 10-7 Hypothesis 10-4 Hypothesis 

𝐸EFG 
Maximum 
killing rate of 
susceptible 
bacteria 

days−1 36 [23] 36 [23] 36 [23] 36 [23] 

𝐸H@ 

Antibiotic 
concentration 
for half 
maximum effect 
on susceptible 
bacteria 

µg/ml 0.25 [23] 0.25 [23] 0.25 [23] 0.25 [23] 

To some specific diseases causing of Staphylococcus aureus, Mycobacterium tuberculosis, Acinetobacter baumannii and E. coli, respectively, values of 
parameters used in the system (2) is obtained from the literature. Antibiotic used is Ciprofloxacin. In addition that, it has showed 
by  1, values and references for Staphylococcus aureus, 
by  2, values and references for Mycobacterium tuberculosis, 
by  3, values and references for Acinetobacter baumannii and 
by  4, values and references for E. coli. 

 

Taking into consideration values of the parameters in Table 3, qualitative analysis of the 
system (5) are supported by numerical simulations. Moreover, it has obtained the following 
figures in compliance with the results founded in Table 2.  

The antibiotic concentration for equilibria of the system (5) is eliminated completely from the 
body after a while. This circumstance is biological meaning with respect to the antibiotic 
excreted from body, and it can be seen in Table 2 and in these figures obtained from different 
positive initial conditions. 
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Fig.3. In case of 1 < 𝑘\ = 2000, Temporal course of bacteria population, immune cells and antibiotic 
by using the parameter values given in Table 3 for the Staphylococcus aureus. 

 

In the Fig.3, it is founded the results relating to stability of 𝐸Z 0,1,0,0  for Staphylococcus 
aureus. Also, it has observed that other variables except for resistant bacteria have eliminated 
completely from the body after a while. In here antibiotic concentration has excreted in one 
day. Within about one week,  the resistant bacteria reaches a positive equilibrium point, that 
is, its carrying capacity, and susceptible bacteria and immune cells are removed completely 
from the body. In this sense, immune cells do not respond resistant bacteria to antibiotic. 

 

 

Fig.4. In case of 1 < Umtv twmtu
tx

+ 1 = 1.02829 < 𝑘Z = 2.7778, Temporal course of bacteria 
population by using the parameter values given in Table 3 for the Mycobacterium tuberculosis. 

 

Stability of the equilibrium point 𝐸X = 0,0.6534,0.9627,0  for Mycobacterium tuberculosis 
is observed in the Fig.4. Also, while the susceptible bacteria is eleminated, resistant bacteria 
to antibiotic and immune cells are persist in host. In this Figure, it is seen that the 
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concentration of the antibiotic and susceptible bacteria have excreted from the body within 
one day and resistant bacteria and immune cells reach to their positive equilibrium values 
within 25 days. 

 

 

Fig.5. In case of 𝑘\ = 0.57 < 1		and		𝑘Z = 0.9 < Umtv twmtu
tx

+ 1 = 1,00129 < 𝑚𝑖𝑛 𝑘U =

1.2, twmtu
tx

+ 1 = 1.003 , Temporal course of bacteria population, immune cells and antibiotics by 
using the parameter values given in Table 3 for the Acinetobacter baumannii. 

 

In the Fig.5, it has used that the datas obtained for Acinetobacter baumannii and we have 
observed that stability of 𝐸| = 0.001009870389,0.00198115653,0.998295114656,0  
which the sub-populations of susceptible and resistant bacteria to antibiotic and immune cells 
persist. In this respect, the antibiotic concentration excreted within 2 days and immune cells 
reaches a positive equilibria within ten days. Therefore, susceptible and resistant bacteria to 
antibiotic reach to their a very small positive equilibrium values after a long time under the 
specific level of immune system cells. 
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Fig.6. In case of 𝑘U = 0.6 < 1, Temporal course of bacteria population, immune cells and antibiotics 
by using the parameter values given in Table 3 for the E. coli. 

 

Finally, the results relating to stability of 𝐸U = 0,0,1,0  have shown in the Fig.6. by using the 
datas for E. coli. In this sense, antibiotic concentration and susceptible bacteria have 
eleminated within 24 hours. In 7-10 days, the resistant bacteria has disappeared and the 
immune cells has reached to it’s carrying capacity. 

In this study, the effects of antibiotics and immune system cells in case of bacterial infection 
have been assessed in certain intervals of time. 

 

5. Results and Discussions 

In this study, the values 𝑘U, 𝑘Z, 𝑘\ and 𝑘X have stated the conditions identifying the changes 
in the population sizes of the infectious bacteria, hosts immune cells and antibiotic. With 
regards to the biological meaning of the parameters describing these statements, the parameter 
𝑘U	can be comment as the number of bacteria generated by the fraction of susceptible bacteria 
surviving under pressure of immune cells independently from both the effect of antibiotic and 
the conjugation including the transfer of genes between susceptible and resistant bacteria. 
Analogously, 𝑘Z 	represents the bacteria generated by resistant bacteria surviving under 
pressure of immune cells. The parameter 1𝑘3 can be expressed as	 the number of cells generated 
by the fraction of immune cells surviving under pressure of bacteria. Moreover, taking into 
consideration tw

tx-U
= ]^

b/-W<
	in (6), the parameter tw

tx-U
	can be comment as the number of 

bacteria generated by the fraction of susceptible bacteria surviving under both the pressure of 
immune cells and the conjugation including the transfer of genes between susceptible and 
resistant bacteria independently from the effect of antibiotic. Hence, the biological existence 
and stability conditions of the equilibria of system (5) obtained from Table 2 have 
independent from the effect of antibiotic. 

Let us held not the inequality (37). In case of  1𝑘3 < 1, the state expressed only the existence of 
resistant bacteria independently from the status of all other variables is revealed. When 1 <
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U
tv

, the status of the other equilibrium point is taken into account.  In this sense, the effect of 
the immune response of the host is very important in terms of the development of the 
infection. 
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