
© 2019 H.G. Debela, G.F. Duressa published by  International Journal of Engineering & Applied Sciences. This work is licensed under a 

Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. 

476 

 

Exponentially Fitted Finite Difference Method for Singularly Perturbed Delay Differential 

Equations with Integral Boundary Condition 

 

 

Habtamu Garoma Debela a*, Gemechis File Duressa b  

a,bDepartment of Mathematics, Jimma University, Jimma, P. O. Box 378, ETHIOPIA 

E-mail address: habte200@gmail.com a*,  gammeef@gmail.com b 

ORCID numbers of authors: 
0000-0003-0109-6860a, 0000-0003-1889-4690b  

Received date: 16.11.2019 

Accepted date: 28.11.2019 
 

 

 

 
Abstract 

 
In this paper, exponentially fitted finite difference method for solving singularly perturbed delay differential equation 

with integral boundary condition is considered. To treat the integral boundary condition, Simpson’s rule is applied. 

The stability and parameter uniform convergence of the proposed method are proved. To validate the applicability of 

the scheme, two model problems are considered for numerical experimentation and solved for different values of the 

perturbation parameter,   and mesh size, .h  The numerical results are tabulated in terms of maximum absolute 

errors and rate of convergence and it is observed that the present method is more accurate and  -uniformly 

convergent for h    where the classical numerical methods fails to give good result and it also improves the results 

of the methods existing in the literature. 

Keywords: Singularly perturbed problems, Delay differential equation, Exponentially fitted operator, Integral 

boundary condition 
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1. Introduction 

A differential equation is said to be singularly perturbed delay differential equation, if it includes 

at least one delay term, involving unknown functions occurring with different arguments and also 

the highest derivative term is multiplied by a small parameter. Such type of delay differential 

equations play very important role  in the mathematical modeling of various practical phenomena 
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and also widely applicable in the fields such as biosciences, control theory, economics, material 

science, medicine, robotics etc [1-4]. Any system involving a feedback control almost involves 

time delay. The delay occurs because a finite time is required to sense the information and then 

react to it. 

Finding the solution of singularly perturbed delay differential equations is a challenging problem. 

In response to these, in recent years there has been a growing interest in numerical methods on 

singularly perturbed delay differential equations. In mid-eighties to mid-nineties, Lange and Miura 

[5] studied a class of boundary-value problems for second-order differential-difference equations 

in which the highest-order derivative is multiplied by a small parameter and proposed some 

asymptotic method to approximate the solution of this class of differential equations. In 2002, 

Kadalbajoo and Sharma initiated the numerical study of such type of boundary value problems [6-

12]. In [13], a fitted operator scheme on a uniform mesh is suggested to solve an initial value 

problem for a class of linear and semi linear first order delay differential equations. Amiraliyev and 

Cimen [14] proposed a first order uniform convergent fitted finite difference scheme for singularly 

perturbed boundary value problem for a linear second order delay differential equation with large 

delay in reaction term. Subburayan and Ramanujam [15] gave an initial value technique to solve 

singularly perturbed boundary value problem for second order delay differential equation of 

convection-diffusion problem with large delay. 

The standard numerical methods used for solving singularly perturbed differential equation are 

sometime ill posed and fail to give analytical solution when the perturbation parameter ε is small. 

Therefore, it is necessary to develop suitable numerical methods which are uniformly convergent 

to solve this type of differential equations. 

In the present paper, motivated by the works of [16], we developed exponentially fitted operator 

finite difference scheme on uniform mesh for the numerical solution of second order singularly 

perturbed convection-diffusion equations with delay and integral boundary condition. 

Throughout our analysis  C  is generic positive constant  that is  independent of the parameter   

and number of mesh points 2 .N We assume that 1 2[0,2],  (0,2),   (0,1),  (1,2).       

Further, * 2

1 2,  N     is denoted by   2

10,1,2,..., 2 ,  NN   is denoted by   2

21,2,..., 1 ,  NN  

is denoted by  1, 2,..., 2 1 .N N N  
 

Therefore, the main objective of this study is to develop more accurate, stable and convergent 

exponentially fitted operator finite difference method for solving singularly perturbed convection- 

diffusion problems with integral boundary condition. 

 

2. Statement of the problem 

Consider the following singularly perturbed problem 

 

          ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 1) ( ),   (0,2)Ly x y x a x y x b x y x c x y x f x x                            (1) 

 

                                    ( ) ( ),    [ 1,0],y x x x                                                               (2) 

        

2

0

(2) (2) ( ) ( ) ,Ky y g x y x dx l                                                 (3) 

where  ( )x is sufficiently smooth on [ 1,0].   
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For all ,x  it is assumed that the sufficient smooth functions 

1( ), ( )  and  ( ) satisfy ( ) 0,  ( ) 0,  ( ) 0,a x b x c x a x b x c x          and 0.      

Furthermore, ( )g x  is non-negative and monotonic with 

2

0

( ) 1.g x dx   The above assumptions 

ensure that 0 1 2

1 2( ) ( ) ( ).y X C C C         

 The Eqs.  (1)–(3) is equivalent to 

 

 ( ) ( )Ly x F x              (4) 

 

Where 

                 

1 1

2 2

( ) ( ) ( ) ( ) ( ) ( ),                             (0,1)
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 1),      (1,2)

L y x y x a x y x b x y x x
Ly x

L y x y x a x y x b x y x c x y x x

      
 

        




                  (5) 

1

2

( ) ( ) ( 1),     
( )

( ),                           

f x c x x x
F x

f x x

  
 




                                                         (6) 

 

with boundary conditions 

 

                               

2

0

( ) ( ),  [ 1,0],

(1 ) (1 ),   (1 ) (1 ),

(2) (2) ( ) ( ) ,

y x x x

y y y y

Ky y g x y x dx l

   




  



   

  








     

                                              (7) 

 

3. Properties of continuous solution 

 

Lemma 3.1: (Maximum Principle) Let ( )x  be any function in X  such that 

1 1 2 2(0) 0,  (2) 0,  ( ) 0, , ( ) 0, ,K L x x L x x           and[ ](1) 0  then 

( ) 0,  .x x    

 Proof:  Define the test function 

                                           

1
,   [0,1]

8 2
( )

3
,   [1,2]

8 4

x
x

s x
x

x


 

 
  


                                                              (8) 

 

Note that 
1 2( ) 0,  ,  ( ) 0,  , (0) 0,  (2) 0s x x Ls x x s Ks          and [ ](1) 0.s    



H.G. Debela, G.F. Duressa 

479 
 

Let 
( )

max :  .
( )

x
x

s x

 
  

 


  Then, there exists 

0x   such that 
0 0( ) ( ) 0x s x    and 

( ) ( ) 0,  .x s x x       Therefore, the function ( )s  attains its minimum at 0.x x  Suppose 

the theorem does not hold true, then 0.  

Case (i): 0 0x   

0 ( )(0) (0) (0) 0,s s           It is a contradiction. 

Case (ii): 0 1x   

0 0 0 0 0 00 ( )( ) ( ) ( ) ( )( ) ( ) ( )( )( ) 0L s x s x a x s x b x s x                    

It is a contradiction. 

Case (iii): 
0 1x   

0 [( ) ](1) [ ](1) [ ](1) 0,s s           It is a contradiction. 

Case (iv): 0 2x   

0 0 0 0 0 0

0 0

0 ( )( ) ( ) ( ) ( )( ) ( ) ( )( )( )

                               ( )( )( 1) 0,  It is a contradiction.

L s x s x a x s x b x s x

c x s x

         

   

        

 
 

Case (v): 0 2x   

2

0

0 ( )(2) ( )(2) ( )( )( ) 0,K s s g x s x dx              It is a contradiction. 

 Hence, the proof of the theorem. 

                                       

Lemma 3. 2: (Stability Result) The solution ( )y x  of the problem (1)–(3), satisfies the bound 

*

( ) max (0) , (2) ,sup ( ) ,   
x

y x C y Ky Ly x x


 
  

 
 

Proof: For the proof refer [16] 

Lemma 3.3: The bound for derivative of the solution ( )y x  of the problem (1)-(3) when 

1 (0,1)x   is given by  

( )
(1 )

( ) 1 exp ,   0 4,   1,2,..., 1.
jk k

x
y x C k k j N

   
         

  





 

Proof: For the proof refer [17] 

 

4. Formulation of the numerical scheme  

 

For small values of ,  the boundary value problem (1)–(3) exhibits strong boundary layer at 2x   

and interior layer at 1x   (see [16]) and cannot, in general, be solved analytically because of the 

dependence of ( ), ( )  and  ( ) a x b x c x on the spatial coordinate .x  We divide the interval [0,2]   into 

2N  equal parts with constant mesh length .h  Let 
0 2 1 2 20 , ,..., 1, , ,..., 2N N N Nx x x x x x     be the 

mesh points. Then we have ,  0,1,2,...2 .ix ih i N   If we consider, the interval (0,1)x  and the 

coefficients of (1) are evaluated at the midpoint of each interval, then we will obtain the differential 

equation 
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1

0

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 1),   (0,1)

(0) (0)

y x a x y x b x y x f x c x x x

y y

        


 

 


                  (9) 

 

Now, the domain [0,1]   is discretized into N  equal number of subintervals, each of length .h  Let 

0 10 ... 1Nx x x      be the points such that ,  0,1,2,..., .ix ih i N   For the discretization, we 

apply a exponentially fitted operator finite difference method (FOFDM). 

From  (9) we have 

 

                1( ) ( ) ( ) ( ) ( ) ( ),   (0,1)y x a x y x b x y x F x x                                      (10) 

 

where ( ) ( ) ( ) ( 1).F x f x c x x     

To find the numerical solution of (10) we use the theory applied in asymptotic method for solving 

singularly perturbed BVPs. In the considered case, the boundary layer is in the right side of the 

domain i.e. near 1.x  From the theory of singular perturbations given by O’Malley [18] and using 

Taylor’s series expansion for ( )a x about 1x  and restriction to their first terms, we get the 

asymptotic solution as 

 

                                      
0 0

(1)(1 )
( ) ( ) ( (1))exp ,

a x
y x y x y

 
    

 



                                         (11) 

 

where 
0( )y x  is the solution of the reduced problem (obtained by setting  0) of  (10) which is 

given by 

 

                             ( ) ( ) ( ) ( ) ( )a x y x b x y x F x    with 0 (0) (0).y                                                     (12) 

 

Considering h  small enough, the discretized form of (11) becomes 

 

0 0

(1)(1 )
( ) ( ) ( (1))exp ,

a ih
y ih y ih y

 
    

 


  
which simplifies to 

                                         
0 0

1
( ) ( ) ( (1))exp (1) ,y ih y ih y a i

  
      

  
 


                                 (13) 

 

where 
1

,  .
h

h
N

 


 

To handle the effect of the perturbation parameter artificial viscosity (exponentially fitting factor 

( )  ) is multiplied on the term containing the perturbation parameter as 

 

                                

( ) ( ) ( ) ( ) ( ) ( ) ( ),y x a x y x b x y x F x                                                    (14) 

 

with boundary conditions  
0(0) (0)   and   ( )y y N    
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 where ( )y N is evaluated by Runge-Kutta method from the reduced solution of (12). 

Next, we consider the difference approximation of Eq.  (9) on a uniform grid 0{ }N N

i ix    and 

denote 
1 .i ih x x 

 
For any mesh function ,iz  define the following difference operators 

 

     
01 1 1 1 1 1

2

2
,   ,   ,   ,

2

i i i i i i i i i
i i i i

z z z z z z z z z
D z D z D z D D z

h h h h

            
                        (15) 

 

By applying the central finite difference scheme on Eq. (14) takes the form 

 

         

0( )( ( )) ( )( ( )) ( ) ( ) ( ),i i i i i iD D y x a x D y x b x y x F x                                      (16) 

 

with the boundary conditions 
0(0) (0)   and   ( ) .y y N    

Using operator, Eq. (10) is rewritten as 

 

                                                           
h

i iL y F                                                                                 (17) 

 

with the boundary conditions 
0 (0)   and   .Ny y     

where 

 

                

1 1 1 1

2

2
( )( ) ( )( ) ( ) ,

2

h i i i i i
i i i i i

y y y y y
L y a x b x y F

h h

     
                                   (18) 

 

Multiplying Eq. (18) by h and considering h  small and truncating the term ( ( ) ( )),i i ih F b x y x

 results  

 

                                                1 1 1 1

( )( )
2 0

2

i
i i i i i

a x
y y y y y       

 


                                  (19) 

 

 Now using Taylor’s series for 
1iy 
and 

1iy 
up to first term and substituting the results in Eq.  (19) 

into Eq. (16) and simplifying, the exponential fitting factor is obtained as 

 

                                          

(1) (1)
( ) coth

2 2

a a 
  

 

 
                                                                    (20) 

 

Assume that 2N
 denote partition of[0,2]  into 2N subintervals such that 0 10 ... 1Nx x x    

and 1 2 21 ... 2N N Nx x x      with 
2 1

, , 0,1,2,....,2
2

ix ih h i N
N N

    . 

Case 1: Consider Eq. (4) on the domain 
1 (0,1)   which is given by  

 

                          

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( 1)y x a x y x b x y x f x c x x                                               (21) 
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Hence, the required finite difference scheme becomes 

 

    
1 12 2 2

( ) ( )( ) 2 ( ) ( )
( ) ( )

2 2

i i
i i i i i i i

a x a x
y b x y y f c x N

h h h h h
 

    
           

    

     
          (22) 

for 0,1,2,..., .i N   

The numerical scheme in Eq. (22) can be written in three term recurrence relation as      
 

  1 1 , 1,2,...,i i i i i i iE y F y G y H i N            (23) 

 

where  
2 2 2

2
,   ,   ,   ( )

2 2

i i
i i i i i i i i

a a
E F b G H f c x N

h h h h h

 
        

  
 ,   

 Case 2: Consider Eq. (4) on the domain
2 (1,2)  , for right layer in the domain 2  using 

exponentially fitted finite difference method, which is given by 

1 1 1
1

2

2
( ) ( 1)

i i i i i
i i i i i i

y y y y y
a b y c y x f

h h

       
           

   
 Similarly, this equation can 

be written as  

 

       1 1 , 1, 2,...,2 1i j i i i i i i ic y E y F y G y H i N N N                         (24) 

 

where  ( 1), 1,2, ...,j iy y x j N   ,
2 2 2

2
,   ,   ,   

2 2

i i
i i i i i i

a a
E F b G H f

h h h h h

 
      

  
 

Case 3: For 2i N , the composite Simpson’s rule approximates the integral of ( ) ( )g x y x  by  

 
2 2 1 2

2 2 2 1 2 1
1 10

( ) ( ) (0) (0) (2) (2) 2 ( ) ( ) 4 ( ) ( )
3

N N

i i i i
i i

h
g x y x dx g y g y g x y x g x y x



 
 
 

     
 

          (25) 

 

Substituting Eq. (25) into Eq. (3) gives 
2 1 2

2 2 2 1 2 1

1 1

(2) (0) (0) (2) (2) 2 ( ) ( ) 4 ( ) ( )
3

N N

i i i i

i i

h
y g y g y g x y x g x y x L



 

 

 
     

 
 


 

Since (0) (0)y   , from  Eq. (2), this equation can be re-written as  

 
2 2 1

2 1 2 1 2 2

1 1

4 2
( ) ( ) ( ) ( ) 1 (2) (2) (0) (0)

3 3 3 3

N N

i i i i

i i

h h h h
g x y x g x y x g y L g y



 

 

 
      

 
 

   
     (26) 

 

Therefore, on the whole domain [0,2] , the basic schemes to solve  Eqs. (1)-(3) are the schemes 

given in Eq. (23), Eq. (24) and Eq. (26) together with the local truncation error of 1 . 

 

5. Convergence analysis  

The discrete scheme corresponding to the original Eqs.  (1)–(3) is as follows: 
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For 1,2,..., 1,i N   

 

1 ,

N

i i i i NL Y f b                                                         (27) 

 

For 1,...,2 1,i N N    

 

2 ,N

i iL Y f                                                              (28) 

 

 subject to the boundary conditions: 

 

                                                  ,  , 1,...,0i iY i N N                                                             (29) 

 

                                     
2

1 1 1 1
2 2

1

4

3

N
N i i i i i i

N N i

i

g Y g Y g Y
K Y Y h   



 
                                             (30) 

 

And     
N ND Y D Y   

Where 

2 0

1

2 0

2

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

N

i i i i i i

N

i i i i i i i i N

L Y Y x a x D Y x b x Y x

L Y Y x a x D Y x b x Y x c x Y x 

   

    




 

 

Lemma 5.1: (Discrete Maximum Principle) Assume that 
2

1 1

1

4
1

3

N
i i i

i

i

g g g
h 



 
    

and mesh function ( )ix  satisfies 
0( ) 0,x   and 

2( ) 0,N

NK x   Then 
2 2

1 1 2 2( ) 0,  , ( ) 0,  ,N N N N

i i i iL x x L x x        and ( ( )) ( ( )) 0N ND x D x     imply that 

2( ) 0,  .N

i ix x    

Proof:  Define  

 

2

2

1
,   [0,1] ,

8 2
( )

3
,   [1,2] ,

8 4

Ni
i

i

Ni
i

x
x

s x
x

x


  

 
   


                                                                       

Note that 2 2 2

1 1 2( ) 0,  ,  ( ) 0,  , (0) 0,  ( ) 0N N N

i i i i Ns x x Ls x x s Ks x          and

[ ]( ) 0.Ns x    

Let 2( )
max :  .

( )

Ni
i

i

x
x

s x

 
  

 


  Then there exists 2N

kx   such that ( ) ( ) 0k kx s x    and 

2( ) ( ) 0,  .N

i i ix s x x       Therefore, the function ( )s  attains its minimum at .kx x  

Suppose the theorem does not hold true, then 0.  

Case (i): 
0kx x  

00 ( )( ) 0,s x      It is a contradiction. 

Case (ii): 2

1

N

kx   
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10 ( )( ) 0,N

kL s x      It is a contradiction. 

Case (iii): k Nx x  

0 [ ( ) ]( ) 0,ND s x   
 
 It is a contradiction. 

Case (iv): 2

2

N

kx   

20 ( )( ) 0,N

kL s x      It is a contradiction. 

Case (v): 2k Nx x  

2
1 1 1 1

2 2

1

( ) 4 ( ) ( )
0 ( ) ( ) 0

3

N
N i i i i i i

N N i

i

g s x g s x g s x
K s x s x h   



    
     

     
     

It is a contradiction. Hence the proof of the theorem. 

Lemma 5.2: Let  ( )ix  be any mesh function then for 0 2 ,i N   

 2 2
1 2

0 2( ) max ( ) , ( ) , max ( )
N N

N N

i N i
i

x C x K x L x
 

     

Proof: For the proof refer [16]  

The following theorem shows the parameter uniform convergence of the scheme developed. 

Theorem 5.1: Let ( )iy x and iy be respectively the exact solution of Eqs. (1)-(3) and numerical 

solutions of Eq. (17). Then for sufficiently large ,N the following parameter uniform error estimate 

holds: 

 

   

2

0 1

sup ( )i iy x y CN 

 

 
                                                       

 (31) 

 

Proof: Let us consider the local truncation error defined as 

 

    

2
0

2
( ( ) ) ( ) ( ) ( ) ( )h

i i i i i

d d
L y x y D D y x a x D y x

dx dx

    
        

  
                   (32) 

 

where 
1 1

( ) (1) coth (1)
2 2

N N
a a

  
  

 
 


 since 

1

.
2

N 


 In our assumption 1.h N    

By considering is fixed and taking the limit for 0,  we obtain the following 

1 1
1

0 0
lim ( ) lim (1) coth (1)

2 2

N N
a a CN

 


 

 
  

  
 


 

From Taylor series expansion, the bound for the difference becomes 

42
3

2 4

3
0 2

3

( ( ))
( )

( ( ))
( )

i
i

i
i

d y xd
D D y x CN

dx dx

d y xd
D y x CN

dx dx

  



  
   

 

  

  
 

 

where 
0( , )

( ( )) ( )
sup ,  3,4.

i N

k k

i i

k k
x x x

d y x d y x
k

dx dx
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Now using the bounds and the assumption 1,N   (32) reduces to 

 
2

0

2

2
0

2

4 3
3 2

4 3

( ( ) ) ( ) ( ) ( ) ( )

                        ( ) ( ) ( ) ( )

( ( )) ( ( ))
                         

h

i i i i i

i i i

i i

d d
L y x y D D y x a x D y x

dx dx

d d
D D y x a x D y x

dx dx

d y x d y x
CN CN

dx dx

 

 

 

   
        

  

   
       

  

 

 

 

                

(33) 

 
Here, the target is to show the scheme convergence independent on the number of mesh points. 

By using the bounds for the derivatives of the solution in Lemma 3.4, we obtain 

 

           

4 3
3 2

4 3

3 4 2 3

2 4

( ( )) ( ( ))
( ( ) )

(1 ) (1 )
                        1 exp 1 exp

(1 )
                        1 exp

h i i
i i

j j

j

d y x d y x
L y x y CN CN

dx dx

x x
CN CN

x
CN

 

   

 

  

         
            

      

   
   

  

 
 

 






4 3,   since   
 

     

(34) 

 

Lemma 5.3: For a fixed mesh and for 0,  it holds 

 

                             0 1 1

(1 )
exp

 lim max 0,   1,2,3,...

j

mj N

x

m
   

  
 
   








                                                (35) 

 

Proof: Refer from [19]  

By using Lemma 5.3 into Eq. (34), results to 

 

                                                          
2( ( ) )h

i iL y x y CN                                                                  (36) 

 

Hence, by discrete maximum principle, we obtain 

 

                                                                    2( )i iy x y CN                                                           (37) 

 

Thus, result of Eq. (37) shows Eq. (31). Hence the proof. 

Remark: A similar analysis for convergence may be carried out for finite difference scheme (24). 
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6. Numerical Examples and Results 

In this section, four examples are given to illustrate the numerical method discussed above. The 

exact solutions of the test problems are not known. Therefore, we use the double mesh principle to 

estimate the error and compute the experiment rate of convergence to the computed solution. For 

this we put 
2

2
0 2
maxh N N

i i
i N

E Y Y
 

   where N

iY  and 2

2

N

iY  are the thi  components of the numerical 

solutions on meshs of N  and 2 ,N respectively. We compute the uniform error and the rate of 

convergence as maxh hE E 


 and 2 2
log

N
h

N

E
R

E

 
  

 
. The numerical results are presented for the 

values of the perturbation parameter  4 8 2010 ,10 ,...,10 .    

Example 1:   

2

0

( ) 3 ( ) ( 1) 0, (0,1) (1,2)

( ) 1, [ 1,0]

(2) ( ) 2
3

y x y x y x x

y x x

x
y y x dx

      

  

 

 

 

 

Table 1. Maximum absolute errors and rate of convergence for Example 1 at number of mesh 

points 2N 

  32N   64N   128N   256N   512N   

    
410  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 

 0.9943 0.9972 0.9986 0.9993  
810  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 

 0.9943 0.9972 0.9986 0.9993  
1210  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 

 0.9943 0.9972 0.9986 0.9993  
1610  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 

 0.9943 0.9972 0.9986 0.9993  
2010  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 

 0.9943 0.9972 0.9986 0.9993  
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Table 2. Comparisons of maximum absolute errors and rate of convergence for Example 1 at 

number of mesh points 2N 

N          32       64      128     256     512 

Present 

Method 
102  

 

 

6.8902e-03 

 

 

3.4587e-03 

 

 

1.7327e-03 

 

 

8.6773e-04 

 

 

4.3760e-04 
112  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 
122  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 
132  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 
142  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 
152  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 
162  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 
172  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 
182  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 
192  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 
202  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 
hE  6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04 
hR      0.9943     0.9972     0.9986     0.9993  

 

Result in [16] 

     

102  8.7402e−03  4.0726e−03  1.9156e−03 9.1036e−04 4.3976e−04 
112  9.3259e-03  4.4288e-03  2.1232e-03  1.0265e-03  5.0201e-04 
122  9.7404e-03  4.6808e-03  2.2700e-03  1.1087e-03  5.4603e-04 
132  1.0033e-02  4.8591e-03  2.3738e-03  1.1668e-03  5.7716e-04 
142  1.0241e-02  4.9852e-03  2.4472e-03  1.2079e-03  5.9917e-04 
152  1.0387e-02  5.0744e-03  2.4991e-03  1.2370e-03  6.1474e-04 
162  1.0491e-02  5.1374e-03  2.5358e-03  1.2575e-03  6.2574e-04  
172  1.0564e-02  5.1820e-03  2.5618e-03  1.2720e-03  6.3352e-04 
182  1.0616e-02  5.2135e-03  2.5801e-03  1.2823e-03  6.3902e-04 
192  1.0653e-02  5.2358e-03  2.5931e-03  1.2896e-03  6.4292e-04 
202  1.0679e-02  5.2516e-03  2.6023e-03  1.2947e-03  6.4567e-04 
hE  1.0679e-02  5.2516e-03  2.6023e-03  1.2947e-03  6.4567e-04 
hR     1.0240    1.0129     1.0071      1.0038  
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Fig. 1. The behavior of the Numerical Solution for Example 1 at 1210   and 32.N   

 
Fig. 2. Point wise absolute error of Example 1 at 1210   with different mesh size .h  

 

 
Fig. 3.  -uniform convergence with NSFDM in Log-Log scale for example 1 
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Example 2:   
2

2

0

( ) ( 10) ( ) ( 1) , (0,1) (1,2)

( ) 1, [ 1,0]

(2) ( ) 2
3

y x x y x y x x x

y x x

x
y y x dx

       

  

 

 

Table 3. Maximum absolute errors and rate of convergence for Example 2 at number of mesh 

points 2N 

  32N   64N   128N   256N   512N   

    
410  1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7628e-05 

 0.9985 0.9988 0.9993 0.9996  
810  1.5579e-03 1.5579e-03 3.9021e-04 1.9520e-04 9.7628e-05 

 0.9985 0.9988 0.9993 0.9996  
1210  1.5579e-03 1.5579e-03 3.9021e-04 1.9520e-04 9.7628e-05 

 0.9985 0.9988 0.9993 0.9996  
1610  1.5579e-03 1.5579e-03 3.9021e-04 1.9520e-04 9.7628e-05 

 0.9985 0.9988 0.9993 0.9996  
2010  1.5579e-03 1.5579e-03 3.9021e-04 1.9520e-04 9.7628e-05 

 0.9985 0.9988 0.9993 0.9996  

 

Table 4. Comparison of Maximum absolute errors and rate of convergence for Example 2 at 

number of mesh points 2N 

N    32 64 128 256 512 

Present 

Method 
102  

 

 

1.5579e-03 

 

 

7.7976e-04 

 

 

3.9021e-04 

 

 

1.9520e-04 

 

 

9.7633e-05 
112  1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7633e-05 
122  1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7633e-05 
132  1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7633e-05 
142  1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7633e-05 
152  1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7633e-05 
162  1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7628e-05 
172  1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7628e-05 
182  1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7628e-05 
192  1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7628e-05 
202  1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7628e-05 
hE  1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7628e-05 
hR  0.9985 0.9988 0.9993 0.9993  

Result in [16]      
102  5.5958e-03 2.5488e-03 1.1977e-03 5.7296e-04 2.7750e-04 
112  5.8142e-03 2.6717e-03 1.2671e-03 6.1165e-04 2.9860e-04 
122  5.9692e-03 2.7588e-03 1.3161e-03 6.3898e-04 3.1349e-04 
132  6.0790e-03 2.8204e-03 1.3508e-03 6.5829e-04 3.2400e-04 
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142  6.1568e-03 2.8640e-03 1.3753e-03 6.7194e-04 3.3142e-04 
152  6.2119e-03 2.8948e-03 1.3927e-03 6.8158e-04 3.3667e-04 
162  6.2509e-03 2.9166e-03 1.4049e-03 6.8840e-04 3.4038e-04 
172  6.2785e-03 2.9321e-03 1.4136e-03 6.9322e-04 3.4300e-04 
182  6.2980e-03 2.9430e-03 1.4197e-03 6.9662e-04 3.4485e-04 
192  6.3118e-03 2.9507e-03 1.4241e-03 6.9903e-04 3.4616e-04 
202  6.3216e-03 2.9562e-03 1.4271e-03 7.0074e-04 3.4709e-04 
hE  6.3216e-03 2.9562e-03 1.4271e-03 7.0074e-04 3.4709e-04 
hR  1.0965 1.0505 1.0262 1.0135  

 

 
Fig. 4. The behavior of numerical solution for example 2 at 1210   and 32.N   

 
Fig. 5. Point wise absolute error of Example 2 at 1210   with different mesh size .h  
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Fig. 6.  -uniform convergence with NSFDM in Log-Log scale for example 2 

7. Discussion and Conclusion 

This study introduces fitted operator finite difference numerical method (NSFDM) for solving 

singularly perturbed delay differential equations with integral boundary condition. The behavior of 

the continuous solution of the problem is studied and shown that it satisfies the continuous stability 

estimate and the derivatives of the solution are also bounded. The numerical scheme is developed 

on uniform mesh using exponential fitted operator in the given differential equation. The integral 

boundary condition is treated using Simpson’s rule. The stability of the developed numerical 

method is established and its uniform convergence is proved. To validate the applicability of the 

method, two model problems are considered for numerical experimentation for different values of 

the perturbation parameter and mesh points. The numerical results are tabulated in terms of 

maximum absolute errors, numerical rate of convergence and uniform errors (see Tables 1-4). 

Further, behavior of the numerical solution (Figure 1 and 4), point-wise absolute errors (Figure 2 

and 5) and the   -uniform convergence of the method is shown by the log-log plot (Figure 3 and 

6). The method is shown to be  -uniformly convergent with order of convergence ( ).O h The 

performance of the proposed scheme is investigated by comparing with prior study (see Table 2 

and 4). The proposed method gives more accurate, stable and  -uniform numerical result.  
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