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Abstract

In this paper, exponentially fitted finite difference method for solving singularly perturbed delay differential equation
with integral boundary condition is considered. To treat the integral boundary condition, Simpson’s rule is applied.
The stability and parameter uniform convergence of the proposed method are proved. To validate the applicability of
the scheme, two model problems are considered for numerical experimentation and solved for different values of the

perturbation parameter, & and mesh size, N. The numerical results are tabulated in terms of maximum absolute
errors and rate of convergence and it is observed that the present method is more accurate and & -uniformly

convergent for h > & where the classical numerical methods fails to give good result and it also improves the results
of the methods existing in the literature.
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1. Introduction

A differential equation is said to be singularly perturbed delay differential equation, if it includes
at least one delay term, involving unknown functions occurring with different arguments and also
the highest derivative term is multiplied by a small parameter. Such type of delay differential
equations play very important role in the mathematical modeling of various practical phenomena
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and also widely applicable in the fields such as biosciences, control theory, economics, material
science, medicine, robotics etc [1-4]. Any system involving a feedback control almost involves
time delay. The delay occurs because a finite time is required to sense the information and then
react to it.

Finding the solution of singularly perturbed delay differential equations is a challenging problem.
In response to these, in recent years there has been a growing interest in numerical methods on
singularly perturbed delay differential equations. In mid-eighties to mid-nineties, Lange and Miura
[5] studied a class of boundary-value problems for second-order differential-difference equations
in which the highest-order derivative is multiplied by a small parameter and proposed some
asymptotic method to approximate the solution of this class of differential equations. In 2002,
Kadalbajoo and Sharma initiated the numerical study of such type of boundary value problems [6-
12]. In [13], a fitted operator scheme on a uniform mesh is suggested to solve an initial value
problem for a class of linear and semi linear first order delay differential equations. Amiraliyev and
Cimen [14] proposed a first order uniform convergent fitted finite difference scheme for singularly
perturbed boundary value problem for a linear second order delay differential equation with large
delay in reaction term. Subburayan and Ramanujam [15] gave an initial value technique to solve
singularly perturbed boundary value problem for second order delay differential equation of
convection-diffusion problem with large delay.

The standard numerical methods used for solving singularly perturbed differential equation are
sometime ill posed and fail to give analytical solution when the perturbation parameter ¢ is small.
Therefore, it is necessary to develop suitable numerical methods which are uniformly convergent
to solve this type of differential equations.

In the present paper, motivated by the works of [16], we developed exponentially fitted operator
finite difference scheme on uniform mesh for the numerical solution of second order singularly
perturbed convection-diffusion equations with delay and integral boundary condition.

Throughout our analysis C is generic positive constant that is independent of the parameter ¢

and number of mesh points 2N.We assume that Q=[0,2], Q=(0,2), Q =001, Q,=12).
Further, Q" =0, LQ,, O™ isdenoted by {0,1,2,...,2N}, Q" is denoted by {1,2,...,N -1}, Q3"
is denoted by {N+1,N +2,...,2N -1}

Therefore, the main objective of this study is to develop more accurate, stable and convergent
exponentially fitted operator finite difference method for solving singularly perturbed convection-
diffusion problems with integral boundary condition.

2. Statement of the problem

Consider the following singularly perturbed problem

Ly(x) =—£Y"(x)+a(x)y'(x) +b(x) y(x) +c() y(x-) = f (x), x€Q=(0,2) (1)
y()=4(x), xe[-10], 0
Ky(2) = y(2) [ g(x) y()dx =1, 3)

where ¢(x) is sufficiently smooth on [-1,0].
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For all xeQ, itis assumed that the sufficient smooth functions

a(x),b(x) and c(x) satisfy a(x) >, >a >0, b(x)> >0, c(x)<y<0,and a+S+y>0.
2

Furthermore, g(x) is non-negative and monotonic with Ig(x)dx <1. The above assumptions
0

ensure that y e X =C°(Q) nC'(QQ) nC?*(Q, uQ,).
The Egs. (1)-(3) is equivalent to

Ly(x) = F(x) 4
Where
Ly(x) = {Lly(X) =—¢y"(x)+a(x)y'(x) +b(x) y(x), xe =(0) )
Ly(x) =—¢y"(x) +a(x)y'(x) +b(x) y(x) +c(x)y(x-1), xe€Q,=(12)
F(x) = { : (X)—c(x)p(x-1), xe ©)
(%), xeQ,

with boundary conditions

y(X) =¢(x), x e[-1,0],
ya)=y@), y@)=y), (7

Ky(2) = y(2)—£[ g(x)y(x)dx =1,

3. Properties of continuous solution

Lemma 3.1: (Maximum Principle) Let w(x) be any function in X such that
w(0)=>0, Ky(2)>0, Ly (x)>0,VxeQ, Li(x)>0,vxeQ,, and[y](1) <0then

w(X) >0, VxeQ

Proof: Define the test function

L X xefoa]
872
s(x) = 3 o 8)
—+=, xe€[12]
8 4

Note that s(x) >0, VxeQ, Ls(x) >0, VxeQ, uQ,,s(0) >0, Ks(2) >0 and [s"](1) <O.
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Let y:max{%)(:)(): XEQ}. Then, there exists x, €Q such that w(x,)+us(x,)=0 and

w(X)+ 1s(X) >0, VxeQ. Therefore, the function ( + us) attains its minimum at x = x,. Suppose
the theorem does not hold true, then x> 0.
Case (i): x,=0

0 < (w+ us)(0) =w(0)+ 1s(0) =0, Itisa contradiction.
Case (ii): x, €

0 <Ly + 1) (X)) =—&(y + 18)" (%) +alXo ) + 5) (%) +b (% )y + 15)(%,) <0
It is a contradiction.
Case (iii): x, =1
0<[(w+ us) 1@ =[w'1@ + 4s"](@) <0, Itis a contradiction.

Case (iv): x, € Q,
0 < Ly + 8)(Xy) =~y + 115)"(Xg) + (%, )W + 115) (%) + b () (W + 115)(%,)

+¢(X,)(w + us)(X, —1) <0, Itis a contradiction.
Case (V): x, =2

2
0< K+ us)(2) = (w+ us)(2) —gj g(X)(y + us)(x)dx <0, It is a contradiction.
0
Hence, the proof of the theorem.

Lemma 3. 2: (Stability Result) The solution y(x) of the problem (1)—(3), satisfies the bound

()| <C max{|y(0)| ,|Ky(z)|,SU£|Ly(x)|}, xeh

Proof: For the proof refer [16]

Lemma 3.3: The bound for derivative of the solution y(x) of the problem (1)-(3) when

x e Q, =(0,1) is given by

—a(l-X;)
&

‘y(") (x)‘ <C [1+ g™ exp(

Proof: For the proof refer [17]

D k=0<k<4, j=12,.,N-1.

4. Formulation of the numerical scheme

For small values of &, the boundary value problem (1)—(3) exhibits strong boundary layer at x =2

and interior layer at x =1 (see [16]) and cannot, in general, be solved analytically because of the
dependence of a(x),b(x) and c(x) on the spatial coordinate x. We divide the interval [0,2] into

2N equal parts with constant mesh length h. Let 0= X, X,,..., Xy =1 Xy, Xnsas-- Xony =2 be the
mesh points. Then we have x =ih, i=0,1,2,...2N. If we consider, the interval x < (0,1) and the

coefficients of (1) are evaluated at the midpoint of each interval, then we will obtain the differential
equation

479



H.G. Debela, G.F. Duressa
{—sy"(X) +a(x)y'(x) +b(x) y(x) = f (x) —c(x)#(x-1), xe€, =(0,1) )
Yo =Y(0)=¢(0)

Now, the domain [0,1] is discretized into N equal number of subintervals, each of length h. Let
0=%, <X <..<Xy =1 be the points such that x =ih, i=0,12,...,N. For the discretization, we

apply a exponentially fitted operator finite difference method (FOFDM).
From (9) we have

—eY" () +a()y'(x) +b(x)y(x) = F(x), xe€, =(0,1) (10)
where F(x) = f (x) —c(X)g(x-1).
To find the numerical solution of (10) we use the theory applied in asymptotic method for solving
singularly perturbed BVPs. In the considered case, the boundary layer is in the right side of the

domain i.e. near x =1.From the theory of singular perturbations given by O’Malley [18] and using
Taylor’s series expansion for a(x)about x=1and restriction to their first terms, we get the

asymptotic solution as
909 =1, + 0=y, @exp -2 | (1)

where y,(x) is the solution of the reduced problem (obtained by setting & =0)of (10) which is
given by
a(x)y'(x)+b(x)y(x) = F(x) with y,(0) = ¢(0). (12)
Consideringh small enough, the discretized form of (11) becomes
. i a@(@-ih
y(ih) =y, (ih) + (6 -y, (1)) exp(—%j,
which simplifies to

y(ih) =y, (ih) + (6 - ¥, (1) exp(—a(l) G - ipD, (13)

h 1
where p=—, h=—.
P £ N

To handle the effect of the perturbation parameter artificial viscosity (exponentially fitting factor
o(p)) is multiplied on the term containing the perturbation parameter as

—go(p)y"(X) +a(x)y'(x) +b(x) y(x) = F(x), (14)

with boundary conditions y,(0)=¢(0) and y(N)=8&
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where y(N) is evaluated by Runge-Kutta method from the reduced solution of (12).
Next, we consider the difference approximation of Eq. (9) on a uniform grid Q" ={x}", and

denote h=x_, —X.
For any mesh function z,, define the following difference operators

D'z :M, Dz = Zi _Zi—l' D’z :ﬁ’ D'Dz :Lzzﬁzi—l’ (15)
h h 2h h
By applying the central finite difference scheme on Eq. (14) takes the form
—eo(p)(D'Dy(x)) +a(x; )(DOY(Xi ) +b(x)y(x) =F(X), (16)
with the boundary conditions y,(0) =¢(0) and y(N)=6.
Using operator, Eq. (10) is rewritten as
L Yi = F. (17)
with the boundary conditions y, =¢(0) and vy, =6.
where
(18)

I_hyi :_ga_(p)()’m _2h32/i + y‘*1)+a(xi)( y”lz_hyil)"‘b(xi)yi _ Fi’

Multiplying Eq. (18) by h and considering h small and truncating the term h(F —b(x,)y(x.)),

results
(19)

M(yi—l —2y; + yi+1)+¥(yi—1 - yi+l) =0

Now using Taylor’s series for y, ,and y, ,up to first term and substituting the results in Eq. (19)
into Eq. (16) and simplifying, the exponential fitting factor is obtained as

o(p) = %(Dcoth (%(Dj (20)

Assume that 2N denote partition of[0, 2] into 2N subintervals such that 0 =Xy <X <...< Xy =1
and 1< XN+ < XN+42 <. < XoN = 2 with Xi = Ih, h =% =i, = 0,1,2,....,2N .

Case 1: Consider Eq. (4) on the domain Q, =(0,1) which is given by

—y"(X) +a(x)y'(x) +b(x)y(x) = f (x) —c(x)¢(x —1) (21)
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Hence, the required finite difference scheme becomes

(w(p)_min_ﬁ(—ze;(p)+b(xi)jyi (w(/)) a(x)ijl foco(x—N)  (22)

h? 2h h? 2h
fori=0,12,...,N.
The numerical scheme in Eg. (22) can be written in three term recurrence relation as

Eiyi,]_—I-I:,yi—l—Giy”l:Hi, i=1,2,...,N (23)
where Ei:_gzo-_i' Fi_250' 2O-+ﬁ' H;, =fi—cé(x —N),
h 2h h? h 2h

Case 2: Consider Eqg. (4) on the domainQ2 =(L2), for right layer in the domain €, using
exponentially fitted finite difference method, which IS given by
—gc(p)(yi+l_izi +yi‘1j [y. . j+biy. +cy(xi —1)+1, = fj Similarly, this equation can
be written as

Ciyj+Eiyi_1+|:|yi+Giyi+1=Hi, i=N+l,N+2,...,2N -1 (24)

. —-£0 g 20 -0 @

where yj=y(x-1), j=12,..,N,E = -—, k= +b, G=——+—", H =T

Case 3: For i = 2N, the composite Simpson’s rule approximates the integral of g(x)y(x) by

2 h 2N-1 2N
[900y09x = 9O+ g@Y@+2'S g0e)y0e) +43 gbaDy(er) | (@9

Substituting Eqg. (25) into Eq. (3) gives
y(2)——[9(0)y(0)+ 9(2)y(2)+2_2 9(%)Y(Xz) +4Z 90%i.1) Y(X l)j

=1 =1
Since y(0) =¢(0), from Eg. (2), this equation can be re-written as

2N—1

4ghzg(x2. Y0 )——Zg(xzoy(xz.){l——g(z)j y2)=L+ S0y 20

Therefore, on the whole domain Q =[0, 2], the basic schemes to solve Egs. (1)-(3) are the schemes
given in Eq. (23), Eqg. (24) and Eq. (26) together with the local truncation error of 1; .

5. Convergence analysis
The discrete scheme corresponding to the original Egs. (1)—(3) is as follows:
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Fori=12,..,N-1

LY, = f,~bgy (27)
For i=N+1,...,2N -1,
LY, = f, (28)
subject to the boundary conditions:
Y. =¢,i=—N,-N+1,...,0 (29)
KMy =V, — 3 Jitfi +4§2Y‘ bl EVETY (30)
i1

And DY, =D,
here LY, ==&67Y (%) +a(4) DY (x) +b(x )Y (x)
Ly Y, =—&62Y (%) +a(%)DY (%) +b(x)Y () +c ()Y (%_y)

W

+49+ 9y
L_Sip = p<1
3 =P

2N
Lemma 5.1: (Discrete Maximum Principle) Assume that Z 9it
i=1
and mesh function w(x) satisfies w(x,) >0, and K"y(x,,) >0, Then
Ly (x)20, vx e O™, L3y (x) 20, vx e Q3" and D" ((%,))— D™ ((%,)) <0 imply that
w(x)>0, vx e Q™.
Proof: Define

%+ﬁ, x. €[0,1]NO,

S(Xi): 3
S x €[1,21nQ*",
8 4

Note that s(x,) >0, ¥vx, e Q™ Ls(x) >0, ¥x e " U™, s(0) >0, Ks(x,,) >0 and
[s7(xy) <O.
Let u= max{%(x)‘): X, eQZN}. Then there exists x, € Q*" such that w(x, )+ us(x ) =0 and
s(x,
w(x)+us(x) >0, vx e Q. Therefore, the function (y + ws)attains its minimum at x = x, .
Suppose the theorem does not hold true, then x> 0.
Case (i): x, =X,
0<(w+wus)(%,) =0, Itisa contradiction.
Case (ii): x, e Q™"
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O< L' (w+us)(x)<0, Itisa contradiction.
Case (iii): x, =Xy
O0<[D(y + us)1(x,) <0, Itisa contradiction.
Case (iv): x, e Q2"
<L) (w+wus)(x) <0, ltisa contradiction.
Case (V): X, =X,y

% i (W + u8)X% y +49; (W + u8)X + 9y, (W + 1) X 4 h <0
=) 3 o
It is a contradiction. Hence the proof of the theorem.

Lemma 5.2: Let w(x) be any mesh function then for 0<i < 2N,

0< K™ (y +pu8) Xy = (W + 1S) Xy =

|1//(x)|<Cmax{|t//(X0)| KMy ()., max,,

N‘/’(Xi)‘}
Proof: For the proof refer [16]
The following theorem shows the parameter uniform convergence of the scheme developed.
Theorem 5.1: Let y(x;)and y,be respectively the exact solution of Egs. (1)-(3) and numerical

solutions of Eq. (17). Then for sufficiently large N,the following parameter uniform error estimate
holds:

sup [y(x) - ;| <CN* (31)

Proof: Let us consider the local truncation error defined as

2

L (y(x) — xr=aﬂp{9——o+ wawaa)ﬂ——Djyuo (32)

-1 -1 -1
where eo(p) = a(l)N—coth a(l)N— since N—. In our assumption e<h=N"
2 2¢& 2¢&
By considering is fixed and taking the limit for £ — 0, we obtain the following
-1 -1
limeo(p) =lim a(l)N—coth a(l)N— =CN™
£—0 £—0 2 2¢

From Taylor series expansion, the bound for the difference becomes

[fé—D* ij)<uuad(WX%‘
‘«__Doyw)<CN4d(wa‘
where (y( ))H (d y(kX‘)J, k=34.
X e(xo XN) dx
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Now using the bounds and the assumption & < N, (32) reduces to

2

Iy -v)] = —w(p)(d——w ]y(x)+a(x)(——o°]y(x)

IA

(33)

—eo(p)[d—— D'D ]y(x)

a(x; )(—— D jy(xi)

4
cenle (ygxi))H LCN2

d’ (y(x ))H

Here, the target is to show the scheme convergence independent on the number of mesh points.
By using the bounds for the derivatives of the solution in Lemma 3.4, we obtain

[MCTEORSD el

con[1a 00 (—a(l—xj)n 2[ B [—a(l—xj)D
< etexp| — 2 | [+CN 2| 1+ &% exp| —— 2 (34)
£ &

—a(l-X,
<CN™ 1+g“‘exp(MD, since ¢*>¢°

EMUTCY)] P
X4

d’ (y(x »H

g

Lemma 5.3: For a fixed mesh and for &£ — 0, it holds

exp(_a(l_ Xj)

&

m

lim max j:0, m=12,3,... (35)

e->01<j<N-1 &

Proof: Refer from [19]
By using Lemma 5.3 into Eq. (34), results to

I (y(6) -y <CN? (36)
Hence, by discrete maximum principle, we obtain
[yee) -y <CN~ (37)

Thus, result of Eq. (37) shows Eq. (31). Hence the proof.
Remark: A similar analysis for convergence may be carried out for finite difference scheme (24).
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6. Numerical Examples and Results

In this section, four examples are given to illustrate the numerical method discussed above. The
exact solutions of the test problems are not known. Therefore, we use the double mesh principle to
estimate the error and compute the experiment rate of convergence to the computed solution. For

this we put E! = max ‘YiN —Yﬁ”‘ where YN and Y2" are the i" components of the numerical
<I<

solutions on meshs of N and 2N, respectively. We compute the uniform error and the rate of
N

E :
convergence as E" =maxE" andR" = Iogz(ﬁ) The numerical results are presented for the

values of the perturbation parameter & € {104,10‘8,...,10‘20}.

Example 1:

—y"(X)+3y'(X)-y(x-1)=0, xe(0,)U(12)

y(x)=1, xe[-10]

y(2) e X y(x)dx=2
03

Table 1. Maximum absolute errors and rate of convergence for Example 1 at number of mesh

points 2N
£ N =32 N =64 N =128 N =256 N =512

10™* 6.8902e-03 3.4587e-03  1.7327e-03  8.6721e-04  4.3382e-04
0.9943 0.9972 0.9986 0.9993

1078 6.8902e-03 3.4587e-03  1.7327e-03  8.6721e-04  4.3382e-04
0.9943 0.9972 0.9986 0.9993

10  6.8902e-03 3.4587e-03  1.7327e-03  8.6721e-04  4.3382e-04
0.9943 0.9972 0.9986 0.9993

10  6.8902e-03 3.4587e-03  1.7327e-03  8.6721e-04  4.3382e-04
0.9943 0.9972 0.9986 0.9993

10%®  6.8902e-03  3.4587e-03  1.7327e-03  8.6721e-04  4.3382e-04
0.9943 0.9972 0.9986 0.9993
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Table 2. Comparisons of maximum absolute errors and rate of convergence for Example 1 at
number of mesh points 2N

el N> 32 64 128 256 512
Present

Method

o-10 6.8902e-03 3.4587e-03 1.7327e-03 8.6773e-04 4.3760e-04
o-11 6.8902¢-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04
o-12 6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04
713 6.8902¢-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04
o-14 6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04
2-15 6.8902¢-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04
2-16 6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04
717 6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04
o-18 6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04
219 6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04
2—20 6.8902e-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04
E" 6.8902¢-03 3.4587e-03 1.7327e-03 8.6721e-04 4.3382e-04
R" 0.9943 0.9972 0.9986 0.9993

Result in [16]

2-10 8.7402e-03 4.0726e—03 1.9156e-03 9.1036e-04  4.3976e-04
11 9.3259¢-03 4.4288e-03 2.1232e-03 1.0265e-03 5.0201e-04
2712 9.7404e-03 4.6808e-03 2.2700e-03 1.1087e-03 5.4603e-04
013 1.0033e-02 4.8591e-03 2.3738e-03 1.1668e-03 5.7716e-04
214 1.0241e-02 4,9852e-03 2.4472e-03 1.2079e-03 5.9917e-04
215 1.0387e-02 5.0744e-03 2.4991e-03 1.2370e-03 6.1474e-04
216 1.0491e-02 5.1374e-03 2.5358e-03 1.2575e-03 6.2574e-04
017 1.0564e-02 5.1820e-03 2.5618e-03 1.2720e-03 6.3352e-04
218 1.0616e-02 5.2135e-03 2.5801e-03 1.2823e-03 6.3902e-04
219 1.0653e-02 5.2358e-03 2.5931e-03 1.2896e-03 6.4292e-04
220 1.0679e-02 5.2516e-03 2.6023e-03 1.2947e-03 6.4567e-04
E" 1.0679e-02 5.2516e-03 2.6023e-03 1.2947e-03 6.4567e-04
R" 1.0240 1.0129 1.0071 1.0038
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2.4

v T T T
—#+— Numerical solution at N
—S— Numerical Solution at 2N

181

Numerical Solution

14

121

1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

X

Fig. 1. The behavior of the Numerical Solution for Example 1 at £ =10"2 and N =32.
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—S— N=128

Errors
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1

0.2 0.4 0.6 0.8 1 12 1.4 1.6 18 2

Fig. 2. Point wise absolute error of Example 1 at € =102 with different mesh size h.
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Fig. 3. ¢-uniform convergence with NSFDM in Log-Log scale for example 1
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Example 2:

—ey"(x) + (x+10)y'(x) - y(x=1) = x2,

y(x)=1, xe[-10]

2x
y(2)—ef - y(x)dx =2
03

Table 3. Maximum absolute errors and rate of convergence for Example 2 at number of mesh

xe(0,1)U(,2)

points 2N
& N =32 N =64 N =128 N =256 N =512

104  15579e-03  7.7976e-04  3.9021e-04  1.9520e-04  9.7628e-05
0.9985 0.9988 0.9993 0.9996

1078 1.5579e-03  1.5579e-03  3.9021e-04  1.9520e-04  9.7628e-05
0.9985 0.9988 0.9993 0.9996

102 1.5579%-03  1.5579%-03  3.9021e-04  1.9520e-04  9.7628e-05
0.9985 0.9988 0.9993 0.9996

10  1.5579-03  1.5579e-03  3.9021e-04  1.9520e-04  9.7628e-05
0.9985 0.9988 0.9993 0.9996

102  1.5579-03  1.5579%-03  3.9021e-04  1.9520e-04  9.7628e-05
0.9985 0.9988 0.9993 0.9996

Table 4. Comparison of Maximum absolute errors and rate of convergence for Example 2 at
number of mesh points 2N

sl N> 32 64 128 256 512

Present

Method
10 1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7633e-05
o—11 1.5579¢e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7633e-05
712 1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7633e-05
713 1.5579¢e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7633e-05
o—14 1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7633e-05
215 1.5579¢e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7633e-05
216 1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7628e-05
717 1.5579¢e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7628e-05
>-18 1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7628e-05
219 1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7628e-05
220 1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7628e-05
EN 1.5579e-03 7.7976e-04 3.9021e-04 1.9520e-04 9.7628e-05
R" 0.9985 0.9988 0.9993 0.9993

Result in [16]

2—10 5.5958e-03 2.5488e-03 1.1977e-03 5.7296e-04 2.7750e-04
o111 5.8142e-03 2.6717e-03 1.2671e-03 6.1165e-04 2.9860e-04
212 5.9692e-03 2.7588e-03 1.3161e-03 6.3898e-04 3.1349e-04
213 6.0790e-03 2.8204e-03 1.3508e-03 6.5829e-04 3.2400e-04

489



H.G. Debela, G.F. Duressa

6.1568e-03
6.2119e-03
6.2509e-03
6.2785e-03
6.2980e-03
6.3118e-03
6.3216e-03
6.3216e-03
1.0965

2.8640e-03
2.8948e-03
2.9166e-03
2.9321e-03
2.9430e-03
2.9507e-03
2.9562e-03
2.9562e-03
1.0505

1.3753e-03
1.3927e-03
1.4049e-03
1.4136e-03
1.4197e-03
1.4241e-03
1.4271e-03
1.4271e-03
1.0262

6.7194e-04
6.8158e-04
6.8840e-04
6.9322e-04
6.9662e-04
6.9903e-04
7.0074e-04
7.0074e-04
1.0135

3.3142e-04
3.3667e-04
3.4038e-04
3.4300e-04
3.4485e-04
3.4616e-04
3.4709e-04
3.4709e-04
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Fig. 4. The behavior of numerical solution for example 2 at £ =102 and N =32.
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Fig. 5. Point wise absolute error of Example 2 at € =102 with different mesh size h.
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Fig. 6. &-uniform convergence with NSFDM in Log-Log scale for example 2
7. Discussion and Conclusion

This study introduces fitted operator finite difference numerical method (NSFDM) for solving
singularly perturbed delay differential equations with integral boundary condition. The behavior of
the continuous solution of the problem is studied and shown that it satisfies the continuous stability
estimate and the derivatives of the solution are also bounded. The numerical scheme is developed
on uniform mesh using exponential fitted operator in the given differential equation. The integral
boundary condition is treated using Simpson’s rule. The stability of the developed numerical
method is established and its uniform convergence is proved. To validate the applicability of the
method, two model problems are considered for numerical experimentation for different values of
the perturbation parameter and mesh points. The numerical results are tabulated in terms of
maximum absolute errors, numerical rate of convergence and uniform errors (see Tables 1-4).
Further, behavior of the numerical solution (Figure 1 and 4), point-wise absolute errors (Figure 2
and 5) and the & -uniform convergence of the method is shown by the log-log plot (Figure 3 and
6). The method is shown to be & -uniformly convergent with order of convergence O(h).The

performance of the proposed scheme is investigated by comparing with prior study (see Table 2
and 4). The proposed method gives more accurate, stable and & -uniform numerical result.
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