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Abstract   
 
Random number sequences on the optimum design of steel castellated beams have an important effect in the 
minimum weight design. In the present research, this effect is investigated using an optimum design algorithm 
which is based on a recently developed improved harmony search method (IHS). Harmony search optimizer is a 
simulator of musically pleasing that is used to realize the experience of a musician for searching pleasing 
harmony, which is the musically performance process based numerical optimization technique. The minimum 
weights of both beams are taken as the objective functions while the design constraints are respectively 
implemented from The Steel Construction Institute Publication Numbers 5. The design methods adopted in these 
publications are consistent with BS5950 parts. The formulation of the design problem considering the limitations 
of the above mentioned turns out to be a discrete programming problem. The design algorithms based on the 
technique select the optimum Universal Beam sections, dimensional properties of hexagonal holes and total 
number of openings along the beam as design variables. 
 
Keywords: structural optimization, catellated beams, metaheuristic search techniques, harmony search 
algorithm, random number sequences. 
 
 
1. Introduction 
 
Common steel I-beam sections can be modified to intensify their strength by creating an 
open-web section from a root beam. This is achieved by cutting the web of the root beam in a 
certain pattern and then re-welding the two halves to each other. As a result of this cutting and 
re-welding process the overall beam depth increases that causes increase in the capacity of 
section. There are mainly two types of open web-expanded beams: beams with circular 
openings referred to as cellular beams [1-3] and beams with hexagonal openings, also called 
as castellated beams. Since the Second World War the high strength to weight ratio of steel 
castellated beams has been a desirable item to structural engineers in their efforts to design 
even lighter and more cost efficient steel structures [4-6].  
 
Castellated beams are steel sections with hexagonal openings that are made by cutting a saw 
tooth pattern along its centerline in the web of a rolled I beam section the length of the span. 
The two parts are then welded together to produce a beam of greater depth with halves of 
hexagonal holes in the steel section as shown in Figure 1. This hexagonal opening up of the 
original rolled beam increases the overall beam depth, moment of inertia and section 
modulus, while reducing the overall weight of the beam.  
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Fig. 1. Basic Process of Castellated Beam 
 

Castellated beams have been used in various types of constructions for many years. The most 
common building types for these beams are office buildings, car parks, shopping centres and 
any structure with a suspended floor. Castellated beams provide a very economical solution 
for producing tapered members, which have been used extensively in big sports stadiums. 
They can also be used as gable columns and wind-posts. Castellated beams invariably 
produce a more efficient and economical solution than the original beams due to their weight 
and strength. Although the profile for any original I-beam section is standard or fixed, the 
major dimensions that are exact finished depth, hole dimensions and spacing of castellated 
beams are flexible. They are approximately 50% deeper and 50% stronger than the original 
member while without increasing the overall weight.     
      
2. Optimum Design Problem of Castellated Beams 
 
The strength of a beam with various web opening shall be determined based on the interaction 
of flexure and shear at the opening. Design constraints include the displacement limitations, 
overall beam flexural capacity, beam shear capacity, overall beam buckling strength, web post 
flexure and buckling, Vierendeel bending of upper and lower tees, local buckling of 
compression flange and practical restrictions between hole dimensions and the spacing 
between openings. The design procedure given here is taken from “The Steel Construction 
Institute Publication No: 005 titled “Design of Castellated Beams” [6]. The design methods 
are consistent with BS5950 part 1 and 3, and BS449 [7]. 
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Fig. 2. Geometry and notation for cstellated beam 

 
The standart profile geometry and notations used for castellated beams are shown in Figure 2. 
The dimensions of a castellated beam are described as following equations. 

)60cot2(5.0 ocSa                                                (1) 
 ocb 60cot                                                               (2) 

                                                          )(2 baS                                                               (3) 
                                                          chH fS                                                                    (4) 
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Where, S is spacing between centers of the holes, fh is the depth of original section, SH is the 
final depth of the castellated beam, a, b and c are the dimensions of the hexagonal holes. 
Design properties and dimensions of the castellated beam are considered as constraints. 
 
2.1. Maximum Stress Capacity 
 
In the elastic design method the maximum stress can be expressed as following equations. 
Under applied load combinations maximum stress ( max ) in a castellated beam should not 
exceed an allowable stress capacity ( allow ) to be able to resist the external loading.  

)/(11 ttee hAK                                      (5) 
                                                         )4/(2 teeZaK                             (6) 

)( 21max VKMK                              (7) 
   allow max                                                                         (8) 

Where, teeA  is area of tee, th is distance between centroids of top and bottom tees,  teeZ  is 
section modulus of tee, 1K and 2K are coefficients about beam properties. Stresses owing to 
bending and shear are shown in Figure 3.   
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Fig. 3. Stress in tees of the castellated beam 

 
 
2.2. Beam Shear Capacity 
 
It is necessary to check two shear failure modes in castellated beams. The first one is the 
vertical shear capacity check of the beam. The sum of the shear capacities of the upper and 
lower tees gives the vertical shear capacity of the beam. The factored shear force in the beam 
should not exceed vyP : 

)9.0(6.0 postwebofAreaMinimumpP yvy                        (9)              
The other is the horizontal shear check. The horizontal shear is developed in the web post due 
the change in axial forces in the tee as shown in Figure 3. The horizontal shear capacity in the 
web post of beam should not exceed vhP  where: 

)9.0(6.0 teeslowerandupperwebsofAreapP yvh               (10) 
Neglecting the effect of the applied load and considering the vertical equilibrium and the rate 
of the variation of bending moment, then the following can be written. 

ii VV 1                                                           (11)          
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For horizontal equilibrium: 

0
11 2 xH

SVTTV
S

iiih 
                                         (14) 

Where V   is shear force, T   is axial force and M  is bending moment at the cross section of 
the castellated beam, S  is distance between hexagonal hole centers and 0x  is the distance 
between the axial force to flange. These are all shown in Figure 3. 
 
2.3. Web Buckling Capacity of Beam 
 
In this study the compression flange of the castellated beam is assumed to be sufficiently 
restrained through the floor system it is attached to. Hence the overall buckling strength of the 
castellated beam is omitted. Experimental tests on castellated beams have shown that the web 
post flexural and buckling capacity is checked using the following equations according to 
BS5950 method. 

w

fs
r t

tH 3)2( 
                                                        (15) 

cwsw PtHP                                          (16) 

wPV max                                                                (17) 
In these equations; r is slenderness ratio of web and sH  is overall depth of castellated 
beam. cP  value obtain from table 27(c) in BS 5950 according to r and yP values.  
 
2.4. Vierendeel bending of upper and lower tees 
 
The flexural capacity of the upper and lower tees under Vierendeel bending is critical. The 
transfer of shear forces across a single opening causes secondary bending stresses. The 
Vierendeel bending stresses around the opening may be calculated using interaction curves. 
For a symmetrical section, the shear force is resisted by the upper and lower web sections in 
proportion to their depth squared. Therefore, the shear force is divided equally between upper 
and lower web sections. The interaction between Vierendeel bending moment and axial force 
for the critical section in the tee should be checked as follows: 

2K
P allow

u


                                                              (18) 
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u


                                                            (19) 

     0.1
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P                                                       (20) 

 
Where oP  and  M  are the force and moment on the section due to external loading 
respectively. uP  is the maximum allowable shear force and pM  is the maximum allowable 
bending moment in the castellated steel beam. 
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2.5. Classification of Castellated Beam 
 
The computation of the nominal moment strength Mp of a laterally supported beam 
necessitates first the classification of the castellated beam. The beam can be plastic, compact, 
non-compact or slender. In compact sections, local buckling of the compression flange and 
the web does not occur before the plastic hinge develops in the cross section. On the other 
hand in compact sections, the local buckling of compression flange or web may occur after 
the first yield is reacted at the outer fiber of the flanges. Classification I-shaped sections are 
carried out according to Table 1 that is given in BS5950 [10].  
 

Table 1. Limiting width to thickness ratios 
Type of Element Plastic Compact Semi-compact 
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The moment capacity is calculated as SPM yp   for plastic or compact sections and as 

ZPM yp   for semi-compact sections where   2/1/275 yP  is constant, f fb /( ft2 )   
for I-shaped member flanges and the thickness in which bf and ft  are the width and the 
thickness of the flange in which S  is the plastic modulus and Z is the elastic modulus of 
section about relevant axis. yP is the design strength of steel. hw  / wt  for beam web, in 
which fs tHh 2  plus allowance for undersize inside fillet at compression flange for rolled 
I-shaped sections. sH  is the overall depth of the section and wt  is the web thickness. 

wth / values are readily available in UB-section properties table.  
 
2.6. Deflection of Castellated Beam 
 
The limiting values for deflection of a beam under applied load combinations are given in 
BS5950, Part 1. According to these limitations the maximum deflection of a castellated beam 
should not exceed span/360. The deflection of castellated beam is computed using the virtual 
work method which is explained in detail in [9]. Figure 3 shows points of inflection at 
sections i and i+1. Shear force under applied load combination is distributed equally tees, the 
axial and horizontal forces in the upper and lower tees; 

       
h

MN i
i        and        

h
VVST ii

i 2
)( 1

                       (21) 

Where; h  is distance between the centre of upper and lower tees and S  is distance between 
centrals of holes. The deflection at each point is found by applying a unit load at that point. 
Internal forces under a unit load are given by iii TNV ,, . 

Deflection due to bending moment in tee; )(
24

3

ii
T

mt VV
EI
ay                                              (22) 

Deflection due to bending moment in web post of beam; 
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Deflection due to axial force in tee;  

)(2
ii

T
at NN

EA
Sy                                                          (24) 

Deflection due to shear in tee;   
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Deflection due to shear in web post; 
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Where E  is elasticity modulus of steel, TI is total moment of inertia of beam, G  is shear 
modulus of steel and X is the web post form factor. The total deflection of a single opening 
under applied load is obtained by summing the deflections computed above.  

wtatwpmtT yyyyyy                                              (27) 
On the other hand the deflection of the castellated beam is calculated by multiplying the 
deflection of each opening by the total number of openings in the beam as given in [7].         
 
3. Improved Harmony Search Method  
 
Harmony search (HS) algorithm is one of the recent editions to such stochastic search 
techniques founded on musically pleasing simulation to solve combinatorial optimization 
problems. This approach utilizes the experience of a musician for searching pleasing harmony 
similar to the optimum design process which seeks to find optimum solution. The pitch of 
each instrument determines the aesthetic quality; in just the same way as the objective 
function value is determined by the set of values assigned to each decision variable. Although 
HS method has been successfully applied to different practical optimization problems since its 
origination, the applications of the method in structural optimization are still immature and 
require a substantial amount of further research. Up until this time only a limited number of 
publications in the literature are carried out where the application of the technique in different 
problem areas encountered in the field. Amongst these restricted studies that look at the 
effectiveness of the HS method, Lee and Geem used the technique for minimum weight 
design of planar and space truss structures [8]. In 2009, Saka et al. and Değertekin focused to 
examine the optimum design of steel frames formulated according to BS5950 and LRFD-
AISC design codes with HS, respectively [9-10]. Later, the success of the method in optimum 
W-sections for the transverse and longitudinal beams of grillage systems was investigated in 
Erdal and Saka [11-12]. Mainly small scale applications that consist of a small number of 
design variables were used in these aforementioned studies and all of them were concluded 
that HS algorithm was a very rapid and effective method for optimum design of such systems. 
Conversely, Hasançebi et al. evinced a comprehensive performance evaluation of the 
technique in the optimum design of real size trusses and frames where the design problem 
was formulated according to ASD-AISC in evinced a completely opposite outlook [13-14]. In 
comparison to those of other metaheuristic techniques, the performance of HS algorithm was 
qualified substandard with its slow convergence rate and unreliable search efficiency. An 
improvement of the technique was recommended for its application to new structural 
optimization problems, which in fact led to the motivation of the present study.  
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In the classical HS method the parameters harmony memory considering rate ( ) and pitch 
adjusting rate ( ) are selected prior to the application of the method and they are kept 
constant until the end of the iterations. The numerical applications have shown that the 
selection of values for   and   is problem dependent and the initial values selected affect the 
performance of the algorithm. Consequently, in order to determine the appropriate values of 
the harmony search parameters it is necessary to solve the optimization problem several times 
with different values and select the solution with minimum weight. It is apparent that such 
application devaluates the efficiency of the algorithm. In order to overcome this discrepancy, 
numbers of improvements are suggested in the literature. First, Mahdavi et al.  have proposed 
an improved harmony search algorithm that uses variable   and bw  in improvisation step 
where bw  is an arbitrary distance bandwidth [15]. Later, Taherinejad has proposed a new 
function which could help the algorithm to explore vast search space while focusing well on 
local and global optimums [16].  And then, Hasançebi et al. suggested adaptive harmony 
search method where   and   are adjusted by the algorithm itself automatically using 
probabilistic sampling of control parameters [17]. Hence the algorithm tunes these parameters 
to advantageous values online during search. Eventually, Carbas and Saka have used the 
improved version of algorithm for latticed steel domes and some engineering problems, 
respectively. In the present study, different strategies are proposed for   and   to compare 
the minimum weight design of steel castellated beams [18].   is updated using the concept 
suggested by Coelho and Bernert [19]. Before initiating the design process, a set of steel beam 
sections selected from an available UB profile list are collected in a design pool. Each steel 
section is assigned a sequence number that varies between 1 to total number of sections ( secN ) 
in the list. During optimization process selection of sections for design variables is carried out 
using these numbers. The basic components of the improved harmony search algorithm can 
now be outlined as follows.  
 
3.1. Initialization of a parameter set 
 
First a harmony search related optimization parameter set is specified. This parameter set 
consists of four entities known as a harmony memory size (  ), a harmony memory 
considering rate ( ), a pitch adjusting rate (  ) and a maximum search number ( SN ). Out of 
these four parameters,   and   are dynamic parameters that vary from one solution vector to 
another, and are set to initial values of )0(  and )0(  for all the solution vectors in the initial 
harmony memory matrix. It is worthwhile to mention that in the standard harmony search 
algorithm these parameters are treated as static quantities, and hence they are assigned to 
suitable values chosen within their recommended ranges of  95.0,70.0  and 

 50.0,20.0 . 
 

3.2. Initialization of harmony memory matrix  
 
Harmony memory matrix H  is generated randomly initialized next. This matrix represents a 
design population for the solution of a problem under consideration, and incorporates a 
specified number of solutions referred to as harmony size ( ). Each solution vector ( iI ) 
consists of dN  design variables integer number between 1 to SN  (number of values) selected 
randomly each of which corresponds sequence number of design variables in the design pool, 
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and is represented in a separate row of the matrix; consequently the size of H  is ( dN ). j
iI  

is the sequence number of the thi design variable in the thj randomly selected feasible solution.  
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3.3. Evaluation of harmony memory matrix  
 
( ) solutions shown in Eq. (42) are then analyzed, and their objective function values are 
calculated. The solutions evaluated are sorted in the matrix in the increasing order of objective 
function values, that is )( 1I  )( 2I  … )(  I .  
 
3.4. Improvising a new harmony  
 
Upon sampling of a new set of values for parameters, the new solution vector 

 nvIII  ,..,, 21
'I is generated. In the harmony memory consideration, each design variable is 

selected at random from either H  or the entire discrete set. The probability that a design 
variable is selected from the harmony memory is controlled by a parameter called harmony 
memory considering rate ( ). To execute this probability, a random number ir  is generated 
between 0 and 1 for each variable iI . If ir  is smaller than or equal to  , the variable is chosen 
from harmony memory in which case it is assigned any value from the i-th column of the H, 
representing the value set of variable in   solutions of the matrix (Eq. 29). If ir , a 
random value is assigned to the variable from the entire discrete set. 
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If a design variable attains its value from harmony memory, it is checked whether this value 
should be pitch-adjusted or not. Pith adjustment simply means sampling the variable’s one of 
the neighboring values, obtained by adding or subtracting one from its current value. Similar 
to   parameter, it is operated with a probability known as pitch adjustment rate ( ).   
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3.4.1 Updating parameters  
                                        )( I  )(MIN  + ( )(MAX − )(MIN ) )( IDeg                                     (31) 
where, )( I  is the pitch adjusting rate for generation I , )(MIN  is the minimum adjusting rate, 

)(MAX  is the maximum adjusting rate, and i is the generation number. )( IDeg  is updated 
according to the following expression: 
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                                      )( IDeg  = 
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where, )( IMAXHCOST  and )( IMINHCOST  are the maximum and minimum function objective 
values in generation I , respectively; MEANHCOST  is the mean of objective function value of 
the harmony memory matrix. The improvisation of   is carried out using the following 
expression; 

                                  )( I )(MAX  −( )(MAX  − )(MIN ) )( IDeg                                         (33) 
where, )(I  is the harmony memory considering rate for generation I , )(MAX  is the 
maximum considering rate, )(MIN  is the minimum considering rate, and I  is the generation 
number. 
 
3.5. Adaptive constraint handling  

 
Once the new vector is obtained using the above-mentioned rules, it is then checked whether 
it violates problem constraints. If the new vector is severely infeasible, it is discarded. If it is 
slightly infeasible, it is included in the harmony memory matrix. In this way the violated 
harmony vector which may be infeasible slightly in one or more constraints is used as a base 
in the pitch adjustment operation to provide a new vector that may be feasible. This is carried 
out by using larger error values initially for the acceptability of the new design vectors and 
then this value is adjusted during the design cycles according to the expression given below;  

                                i
N

ErErEriEr
S

MINMAX
MAX 




)()(                                                (34) 

where, )(iEr is the error value in iteration i , MAXEr  and MINEr  are the maximum and the 
minimum errors defined in the algorithm respectively, sN  is the maximum iteration number 
until which tolerance minimization procedure continues. Eq. 48 provides larger error values in 
the beginning of the design cycles and quite small error values towards the final design 
cycles. Hence when the maximum design cycles are reached the acceptable design vectors 
remain in the harmony memory matrix and the ones which do not satisfy one or more design 
constraints smaller than the error tolerance would be pushed out during the design iterations. 
 
3.6. Update of Harmony Matrix  

 
After generating the new vector, its objective function value is calculated. If this value is 
better than that of the worst harmony vector in the harmony memory, it is then included in the 
matrix while the worst one is discarded out of the matrix. The updated harmony memory 
matrix is then sorted in ascending order of the objective function value.  

 
3.7. Termination   

 
Steps 3 and 4 are repeated until a pre-assigned maximum number of cycles cycN  is reached. 
The number is selected large enough such that within this number no further improvement is 
observed in the objective function. 
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4. Numerical Example  
 
Harmony search method based optimum design algorithm presented in the previous sections 
is used to design two castellated beams. Among the steel sections list 64 UB sections starting 
from 254X102X28 UB to 914X419X388 UB are selected to constitute the discrete set of steel 
profiles from which the design algorithm selects the sectional designations for the castellated 
beams [23]. For the hole depths discrete set is prepared that has 421 values which starts from 
180mm and goes up to 600mm with the increment of 1mm. Another discrete set is arranged 
for the number of holes that contains numbers starting from 2 to 50 with the increment of 1. 
 
4.1. 5-m span intermediate steel beam 

 
A simply supported beam shown in Figure 4 is selected as first structural design example in 
order to compare the minimum weight of optimally designed steel castellated beams. The 
beam has a span of 5 m and is subjected to 5 kN/m dead load including its own weight. Two 
concentrated live loads with 40 kN weight also act at the beam as shown in the same figure. 
The maximum displacement of the beam under these loads is restricted to 14 mm while other 
design constraints are implemented from BS5950 as explained in Section 1 and 3.  

5 m

5 kN/m

40 kN 40 kN

 
Fig. 4. Loading of 5-m simply supported beam 

 
Considering the stochastic nature of HS technique, castellated beam with 5m span is designed 
with both improved and standard algorithms. The parameterization of the technique is 
conducted in line with the recommendations of the former studies [8-12], and thus the 
following parameter value set is used in solving the problem: a harmony memory size 
of 50 , a maximum search number of 5000sN  are kept the same for both improved and 
standard HS algorithms. A harmony memory considering rate of 90.0 , and a pitch 
adjusting rate of 30.0 . It is important to note that these values of control parameters for 
  and   remain unchanged in the standard HS algorithm. Contrary to standard HS method, 
the values of MAX  and MAX  parameters in the IHS algorithm are taken as 0.99 and the 0.01 
is assigned to MIN  and MIN . These values are dynamically updated by the proposed 
algorithm during the optimization process. 

 
The optimum results obtained by improved and standard versions of technique as well as the 
sectional designations and geometric dimensions for castellated beam are given in Table 2. It 
is apparent from the same table that improved HS has produced the lightest beam for steel 
castellated beam that has the minimum weight of 151.59 kg. The controlling interaction ratios 
of castellated beam are 0.99 for vierendeel bending, 0.49 for web-post buckling and 0.46 for 
horizontal shear. Classical HS algorithm has accomplished the heavier design with castellated 
beam which is 159.82 kg; 5.24% heavier for same 5m span.  
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Table 2. Optimum solutions of 5-m simply supported beam 

 CASTELLATED BEAM 
 Section Design (UB) Depth of  Hole Number of Holes Max. Strength Ratio Minimum Weight (kg) 

IHS 254×146×31 218 14 0.99 151.59 

HS 305×102×33 202 15 0.97 159.82 

 
These results demonstrate that the proposed algorithm improves the performance of HS 
technique and it renders unnecessary the initial selection of the harmony search parameters. 
The design history curves for improved and standard versions of the technique for castellated 
beam is shown in Figure 5. This figure reveals the fact that IHS method has the faster 
convergence rate than classical HS algorithm.  

 

 
Fig. 5. Design history graph of 5-m simply supported beam 

 
Within 5,000 analyses the proposed technique approaches a design in the vicinity of the 
optimum results. The maximum values of vierendeel bending moment ratio are 0.99 and 0.97 
for castellated beam which are almost upper bound. This clearly reveals the fact that, in steel 
castellated beams, vierendeel bending moment constraints are dominant in the design 
problem. The IHS design algorithm presented selects 254×146×31 UB section for the 
castellated root beam shown in Table 2. The optimum castellated beam should be produced 
such that it should have 14 hexagonal holes each having 218 mm depth. The optimum shape 
of the castellated beam obtained from IHS method is demonstrated in Figure 6.  
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Fig. 6. Optimum profile section of the 5-m castellated beam 

 
5. Effect of Random Number Sequences In IHS Algorithm 
 
Since stochastic methods are based on eventual random decisions in operators, it is required 
to carry out a series of independent runs for castellated beam design example. Random 
number sequences always produce same number for different runs of the programs provided 
that the same seed value is used in each run. If the subroutine SEED is not called before the 
first call to subroutine RANDOM in FORTRAN, RANDOM always begins a seed value of 
one. However the use of different seed values in each run generates different random 
numbers.  Since the IHS method also employs random number sequences in making 
decisions, the final result attained naturally is dependent upon the random numbers generated 
within each search.   
 
To investigate the effect of random number sequences generated during the design procedure 
to the final result obtained by IHS technique, a design example for castellated beam is re-
designed several times by using different seed value in each run. Firstly, 5-meter intermediate 
steel beam is optimized 50 times by running the program with different seed values. In the 
first run seed value of 1 is given in the beginning of the FORTRAN program, in the second 
run the seed value of 2 is assumed and in the 50th run the seed value of 50 is adopted. These 
runs are collected in two groups in order to investigate the effect of the initially selected 
maximum number of iterations in the IHS technique and variation of the seed value within 
that group of runs. In the first group of runs the maximum number of iterations is taken as 500 
and seed values are changed from 1 to 50 in the each separate runs. In the second group of 
runs this number is taken as 5000. The minimum weights obtained in each run for the 5-meter 
intermediate steel beam are shown in Figure 7 and Figure 8 depending on the maximum 
number of iterations adopted in both group of run. It is apparent from the comparison of these 
two figures that the use of different seed values affects the minimum weight obtained in each 
run though some of the runs produce the same weight. But this effect becomes less if the 
maximum number of iterations in each run is choosen as a large number. 
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Fig. 7. Effect of Seed Values for 5-m span beam with 500 iterations 

 

 
Fig. 8. Effect of Seed Values for 5-m span beam with 5000 iterations 

 
 
6. Conclusions 
 
The present research is the first study to cover a comparison of the performance of the 
adaptive and classical versions of harmony search algorithm during the optimization process 
of steel castellated beams. Unlike the classical algorithm where the update parameters, 
harmony memory consideration rate and pitch adjusting rate, of the technique are assigned to 
constant values throughout the search, the proposed algorithm benefits from updating these 
control parameters to advantageous values online during the iteration process. The efficiency 
of the improved harmony search algorithm in structural optimization is numerically examined 
using an example on size optimum design of castellated beams. The design history graph 
generated for the 5-meter simply supported beam problem using improved and classic 
harmony search algorithms clearly evince a significant performance improvement achieved 
with the former. Design history graphic for castellated beam reveals the fact that IHS method 
has the faster convergence rate than classical HS algorithm. Similarly, the effect of random 
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number generation to the final result in the case of IHS algorithm is also investigated by 
running the optimum design program with different seed values. The minimum weights 
obtained in each run with different seed value for the steel castellated beams. It is apparent 
from the comparison of seed values with 500 and 5000 iterations that the use of different seed 
values affects the minimum weight obtained in each run though some of the runs produce the 
same minimum weight. However this effect becomes less if the maximum number of 
iterations in each run is selected as a large number.  
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