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Abstract 

Vibration of an axially loaded viscoelastic nanobeam has been studied in this paper. Viscoelasticity of the 

nanobeam has been modeled as a Kelvin-Voigt material. Equation of motion and boundary conditions for an 

axially compressed nanobeam has been obtained with help of Eringen’s Nonlocal Elasticity Theory. Viscoelasticity 

effect on natural frequency and damping of nanobeam and critical buckling load have been investigated. 

Nonlocality effect on nanobeam structure in the view of viscoelasticity has been discussed.  

Keywords: viscoelastic nanobeam, nonlocal elasticity, vibration, axially loaded, buckling.  

1. Introduction 

Nano-sized structures are like carbon nanotubes (CNTs) taken interests of scientists over the 

years. The concept of design of a structure with superior properties getting attention of the 

industry. Possible applications of CNTs have increased day by day. 

CNTs can be modeled by using continuum mechanics. Atomic interactions like small scale 

effect, surface stresses and long distance interaction can not be ignored in the nano-dimensional 

mechanics. Eringen [1,2] dealt with this problem and proposed the Nonlocal Elasticity Theory 

which includes the size effect and has been used in the most of the recent researches about 

modeling of CNTs. 

Most of the papers about statics and dynamics of CNTs assumed that a CNT is an elastic 

structure. However, damping characteristics of CNT structures should be accounted in the 

continuum model for more realistic approach.    

Lei et al. investigated the dynamic behavior of nonlocal viscoelastic Euler-Bernoulli [3] and 

Timoshenko nanobeams [4]. Dynamic stability and buckling of viscoelastic nanobeams studied 

by Chen et al. [5] and Pavlovic et al. [6]. Buckling of cantilever nanotubes [7,8], boron-nitride 

nanotubes [9] and silicon-carbide nanotubes [10] investigated by researchers. Karlicic et al. 

[11] carried out the free transverse vibration analysis of the multiple CNTs embedded in a 

viscoelastic polymer matrix which was affected by an axial magnetic field. Arani et al. [12] 

investigated the free and forced vibrations of double viscoelastic piezoelectric nanobeams with 
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the help of nonlocal viscoelasticity. Mohammadi [13] studied the vibration of rotating 

viscoelastic nanobeam with the thermal and humidity effect. Zhang et al. [14] investigated the 

transverse vibration of an axially loaded viscoelastic nanobeam embedded in elastic medium. 

Ebrahimi and Barati used the nonlocal strain gradient theory for the viscoelastic functionally 

graded (FG) nanobeams which resting on viscoelastic medium in the analysis of problems like: 

free vibration [15], hygro-thermal loading [16,17], surface and thermal effects [18] and size 

effect of nano-grains and nano-voids [19]. Attia and Mahmoud [20] modeled the viscoelastic 

nanobeam by using nonlocal couple-stress elasticity. Attia and Abdel Rahman [21] studied the 

free vibration of a FG viscoelastic nanobeams including the rotation and surface energy effects. 

Also, fractional nonlocal elasticity models have been proposed for dynamic analysis of 

viscoelastic nanobeams in recent studies [22–27] . 

Present work assumes the CNT structure as a Kelvin-Voigt type viscoelastic material. Axial 

load effect through the buckling including nonlocal effect and viscoelasticity will be 

investigated. Variation of the non-dimensional frequency and damping of the nanobeam will 

be depicted in figures. Critical buckling load characteristics will be obtained.  

2. Analysis 

Viscoelastic nanobeams with simply supported and clamped-free boundary conditions are 

considered (Fig. (1)). The governing equation of motion for an axially loaded viscoelastic 

nanobeam can be interpreted as [28]: 

 𝐸 (1 + 𝛼
𝜕

𝜕𝑡
) 𝐼

𝜕4𝑤(𝑥,𝑡)

𝜕𝑥4
= −𝑚

𝜕2𝑤(𝑥,𝑡)

𝜕𝑡2
− 𝑃

𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2
    (1)  

where E is the Young’s modulus, m is the mass per unit length, I  is the moment of inertia, w is 

the transverse displacement of the CNT, α is the viscous parameter of the viscoelastic material 

and P is the axial load. 

 

Fig. 1. Continuum Model of the Present Problem: a) Simply Supported Nanobeam b)Clamped-Free 

Nanobeam 

2.1. Nonlocal Elasticity Approach 

Nonlocal constitutive stress-strain relation can be expressed in differential form as [29]:  

 (1 − 𝜇𝛻2)𝜏𝑘𝑙 = 𝜆𝜀𝑟𝑟𝛿𝑘𝑙 + 2𝐺𝜀𝑘𝑙                            (2) 

where 𝜏𝑘𝑙 is the nonlocal stress tensor, 𝛿𝑘𝑙 is the strain tensor, 𝜆 and G are the material constants 

and 𝜇 = (𝑒0𝑎)
2 is called nonlocal parameter. Eringen obtained very close results to discrete 

theory results with a nonlocal continuum approach. With Eringen’s assumption, the nonlocal 

model comprises both discrete and continuum approaches.    
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For isotropic viscoelastic carbon nanotube, nonlocal one dimensional relation in axial direction 

can be written as: 

 (1 − 𝜇
𝜕2

𝜕𝑥2
)𝜎 = 𝐸 (1 + 𝛼

𝜕

𝜕𝑡
) 𝜀       (3) 

where 𝜀 and 𝜎 are the normal strain and the normal stress, respectively. 

2.2. Nonlocal Equation of Motion and Boundary Conditions 

If Eq. (3) is inserted into Eq. (1), one obtains [30,31]: 

 𝐸 (1 + 𝛼
𝜕

𝜕𝑡
) 𝐼

𝜕4𝑤(𝑥,𝑡)

𝜕𝑥4
= −(1 − 𝜇

𝜕2

𝜕𝑥2
) (𝑚

𝜕2𝑤(𝑥,𝑡)

𝜕𝑡2
+ 𝑃

𝜕2𝑤(𝑥,𝑡)

𝜕𝑥2
)    (4) 

If Eq. (4) is reorganized according to D’Alambert Principle: 

 𝐸𝐼𝛼
𝜕5𝑤(𝑥,𝑡)

𝜕𝑥4𝜕𝑡
+ 𝐸𝐼

𝜕4𝑤(𝑥,𝑡)

𝜕𝑥4
+𝑚
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+ 𝑃
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= 0     (5) 

Eq. (5) is the equation of motion of a viscoelastic nanobeam. If the nonlocal parameter and 

viscoelasticity parameter are assumed to be zero (=0 , α=0), the classical elasticity equation 

will be obtained. The boundary condition on both edges of nanobeam considered as simply 

supported (S-S) and clamped-free (C-F) which are defined below [32]: 

 

𝑥 = 0 {
𝑤(0, 𝑡) = 0

−𝐸 (1 + 𝛼
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𝑆 − 𝑆   (6) 
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𝐶 − 𝐹   (7) 

The transverse displacement w can be expressed as:    

 𝑤(𝑥, 𝑡) = 𝐴(𝑥)𝑒𝜆𝑡        (8) 

where A(x) and λ is the amplitude function and characteristic value for viscoelastic nanobeam 

vibration, respectively. Inserting Eq. (8) into Eq. (5) gives following dimensionless equations 

of motion with the assumption of dimensionless nanotube length (�̅� =
𝑥

𝐿
): 

 
𝜕4𝐴(�̅�)

𝜕�̅�4
(1 + 𝛼𝜆 −

𝜇

𝐿2
�̅�) +

𝜕2𝐴(�̅�)

𝜕�̅�2
(�̅� −

𝜇

𝐿2
𝛺𝜆2) + 𝐴(�̅�)(𝛺𝜆2) = 0         (9) 

where �̅� is the dimensionless axial load and Ω is the characteristic parameter coefficient which 

are defined as below: 
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 �̅� =
𝑃𝐿2

𝐸𝐼
   ,   𝛺 =

𝑚𝐿4

𝐸𝐼
      (10) 

Eq. (9) is a forth order differential equation and general solution can be written as: 

 𝐴(�̅�) = 𝐶1𝑒
𝑟1�̅� + 𝐶2𝑒

𝑟2�̅� + 𝐶3𝑒
𝑟3�̅� + 𝐶4𝑒

𝑟4�̅�    (11) 

where Ci and ri (i=1,2,3,4) are the integration constants and the roots of the characteristic 

equation in Eq. (9), respectively. In Eqs. (6) and (7), boundary conditions should be written in 

matrix form using amplitude function in Eq. (8) for unknown coefficients as below: 

 [

𝑃11
𝑃21
𝑃31
𝑃41

   

𝑃12
𝑃22
𝑃32
𝑃42

   

𝑃13
𝑃23
𝑃33
𝑃43

   

𝑃14
𝑃24
𝑃34
𝑃44

] [

𝐶1
𝐶2
𝐶3
𝐶4

] = 0     (12) 

Eq. (12) is an eigen-value problem and the determinant of the coefficient matrix must be equal 

to zero for a nontrivial solution. Characteristic parameter (λ) for the viscoelastic nanobeam 

vibration can be obtained from determinant equation. λ is a complex number and its imaginary 

part defines the non-dimensional frequency (NDF) and real part defines the non-dimensional 

damping (NDD) of viscoelastic nanobeam. 

Buckling is a structural stability loss and can be seen on axially loaded beams. It is a limit value 

problem that free vibration frequency of the structure drops to zero (See Eq. (13)). 

 lim
𝑁𝐷𝐹→0

�̅� = 𝑃𝐶𝑅     (13)

    

3. Numerical Results and Discussion 

In this section, free transverse vibration analysis of the viscoelastic nanobeams has been carried 

out for various nonlocal parameter, viscous parameter and axial load. 

Validation of the present nonlocal elastic CNT nanobeam model has been carried out in 

previous study [33]. Lattice dynamics results have been used in order to compare the nonlocal 

elastic stress gradient model. The nonlocal theory gives close results with the lattice dynamics 

results at the end of first Brillouin Zone. 

In Fig. (2), the nonlocality and viscous effect on complex characteristic parameter of 

viscoelastic nanobeam in simply supported boundary condition can be seen. Softening effect of 

nonlocality has been addressed in previous works [34,35]. Nonlocal parameter reduces the NDF 

because of the softening. Viscous characteristics of the viscoelastic material also reduces with 

nonlocal parameter because nonlocality increases the elastic behavior of the material. Viscous 

parameter (α) decreases the NDF and increases the NDD. That is an expected result from the 

classical continuum mechanics approach. Clamped-free boundary condition results are shown 

in Fig. (3). Except one case, clamped-free boundary conditions gives same results with simply 

supported boundary case. In contrary to S-S case, clamped-free boundary condition increase 

the NDD and nanobeam buckles easily for higher nonlocal parameters. With applying 

compressive axial load, nanobeam can buckle easily in C-F boundary case and this situation 

can be seen clearly in Fig. (7).  
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In Figs. (4) and (5), axial compressive load effect on complex characteristic parameter of 

viscoelastic nanobeam can be seen. Axial load reduces the NDF and has no effect on NDD in 

simply supported boundary case. On the other hand, axial load change the vibration 

characteristics in clamped-free boundary case. Without the axial load, NDF and NDD increases 

with the help of nonlocality. With the axial load, NDF decreases and NDD increases reversely. 

In the vibration of clamped-free nanobeams, nonlocal effect shows a strengthening effect on 

the material and fundamental frequency of nanobeam increases in contrary to other boundary 

conditions. This phenomena discussed by scientists in several studies [36–38] . Li et al. [39,40] 

pointed out that, both enhancing and weakening nonlocal effects are possible and correct. 

Nonlocal integral models have been used in recent studies to overcome this paradox [41–43]. 

Buckling of viscoelastic nanobeams can be seen in Figs. (6) and (7). NDF drops to zero with 

increasing effect of axial load. NDD doesn’t change in S-S case but increases in C-F case with 

axial load. Viscoelasticity increases the NDF with nonlocal elasticity approach for a nanobeam 

without an axial load applied. This result is due to the nonlocal viscoelastic effects and 

contradicts with nonlocal elastic beam model. 

Variation of critical buckling load is shown in Fig. (8) for the both boundary cases. Critical 

buckling load changes only with nonlocal parameter. Nonlocal parameters reduces CBL 

whereas viscous parameter couldn’t change it. 

 

     

 

Fig. 2. Nonlocal and Viscous Parameter Effects on NDF and NDD in Simply Supported Boundary 

Condition (P̅ = 1) 
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Fig. 3. Nonlocal and Viscous Parameter Effects on NDF and NDD in Clamped-Free 

Boundary Condition (P̅ = 1) 

 

 

Fig. 4. Nonlocal, Viscous and Axial Load Effects on NDF and NDD in Simply Supported Boundary 

Condition 
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Fig. 5. Nonlocal, Viscous and Axial Load Effects on NDF and NDD in Clamped-Free Boundary 

Condition 

 

 

Fig. 6. Nonlocal Effect on Buckling of Viscoelastic Nanobeam in Simply Supported Boundary 

Condition (α=0.01) 
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Fig. 7. Nonlocal Effect on Buckling of Viscoelastic Nanobeam in Clamped-Free Boundary Condition 

(α=0.01) 

 

 

Fig. 8. Variation of Critical Buckling Load with Nonlocal and Viscous Parameters (NDF=NDD=0) 

4. Conclusion 

Present study deals with the vibration problem of an axially loaded viscoelastic nanobeam with 

simply supported and clamped-free boundary conditions. The nanobeam has been assumed as 

Kelvin-Voigt type viscoelastic material. Governing equations and boundary conditions have 

obtained with Eringen’s Nonlocal Elasticity Theory. The viscous effect of viscoelastic medium 

decreases the complex characteristic parameter of nanobeam in simply supported boundary 

case. But in clamped-free boundary case, viscous effect increases the complex characteristic 

parameter because of the nonlocal boundary condition. Axial load and nonlocal effect shows 
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softening effect on nanobeam lattice structure. Results could be useful in designing a nano-

mass sensor applications.  
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