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Abstract

In this paper, fifth order predictor-corrector method is presented for solving quadratic Riccati differential
equations. First, the interval is discretized and then the method is formulated by using the Newton’s backward
difference interpolation formula. The stability and convergence of the method have been investigated. To
validate the applicability of the proposed method, three model examples with exact solutions have been
considered and numerically solved by using MATLAB software. The numerical results are presented in tables
and figures for different values of mesh size h. Pointwise absolute errors and maximum absolute errors are also
estimated. Concisely, the present method gives better result than some existing numerical methods reported in
the literature.
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1. Introduction

Problems arising in many physical phenomena, engineering and scientific applications are
modeled with nonlinear differential equations. Riccati differential equation is applicable in
engineering science applications such as stochastic realization theory, optimal control, robust
stabilization, network synthesis, diffusion problems, and the newer applications include such
areas as financial mathematics, Allahviranlooa and Behzadib [1]. The solution of Riccati
differential equations has so much importance in numerical methods due to the fact that even
higher order partial differential equations can be transformed into first order ordinary
differential equation and solved, Baba [2]. Thus, methods of solution of such differential
equations have attracted attention of researchers for a very long time.

Recently, some researchers have been tried to find the approximate solution of first order
nonlinear ordinary differential equations. For example; Gashu and Habtamu [3] considered
the comparison of higher order Taylor’s method and fifth order Runge-Kutta method,;
Gemechis and Tesfaye [4] presented fourth order Runge-Kutta for solving quadratic Riccati
differential equations; Vinod and Dimple [5] presented Newton-Raphson based modified
Laplace Adomian decomposition method for solving quadratic Riccati differential equations;
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Fateme and Esmaile [6] presented approximate solution for quadratic Riccati differential
equations. Other authors [7-13] also discussed the quadratic Riccati differential equations.
However, some of these methods are not more accurate. Thus in this paper, we present a
stable and more accurate numerical method for solving quadratic Riccati differential
equations.

2. Description of the Methods

Consider the quadratic Riccati differential equation of the form:

Y p()+4(x) Y00+ 1Y) (1)
with initial condition,
y(%)=a 2)

where, p(x),q(x), r(x) are continuous functions, r(x)=0 and « is arbitrary constant.
To describe the methods, denote Eqg. (1) as:

d
o=fxy) 3)

Now, divide the interval [x,, L] into N equal subintervals of mesh length h and the mesh

points given by x. =X, +ih, i= 1, 2,..., N. Then, h= L;IXO , where N is a positive integer.

Integrating Eq. (3) on the interval [ . .+1] we obtain:

j j f (X, y)dx

X X

= Y(%a) = y(x jf(x y)dx (@)

To derive the methods, we approximate f (x, y) by a suitable interpolation polynomials.
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2.1. Description of Predictor Method

Let us take k data values (x;, ), (X fii),.os(X_yuss fiin) - For this data, we fit the

Newton’s backward difference interpolating polynomial of degree k —1 and we get:

1
Dea(X)= (% +sh)=F (x)+sVF (x)+ (S+)V2f( X)+-..
()
+s(s+1)(s+2)...(s+k—2)vk71f (%) +7;
(k-1)!
where
—X S(s+1)(s+2)...(s+k-1
s=2 hX' ang T = S k)l ( Jhef o) (6)
is the error term, when ¢ lies in some interval containing the points x;, x_, X_,,and X
The limits of integration in Eq. (4) becomes:
X =%X=s=0,x =x,=s =1 and dx=hds. (7)
Thus, replacing f (x,y) by RB_ (x) in Eq. (4) and using Eq. (5) in Eq. (4), we get:
i 1 1
Vil =Y, +hj{fi +sVf, +§s(s+1)V2fi +€s(s+1)(s+2)v3fi +...}ds (8)
0
Now, on integrating term by term in Eq. (8) with respect to s, we obtain:
j.sds:l, J.s(s+1)ds _E js(s+1)(s+2)ds:g,
0 2 6’ 4
1
.[s(s+1)(s+2)(s+3)ds=23—501, _[s(s+l)(s+2)(8+3)(s+4)d3_41725
0
Hence, from Eq. (8), we get:
Vi = y,+h{f +1Vf +§v2f 3V3fi+EV4fi ﬂv5f } 9)
2 12 8 720 1440

We obtain the error term as:
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L 1)...(s+k-1) ., i f ’
Tkpzhk”z[s(SJr )(k()f+ ) 092, )ds =h !gp(s)f”(&ods, 0<& <1 (10)

where

g,(s) =%(s(s+1)(s+2)...(s+k—1)) (11)

By choosing different values for k, we get different methods. But for this particular study, we
choose the value for k =5 which is of order five method. Thus, we get:

Y, =Y, +h fi+EVfi+£V2fi+§v3fi+2—5lv“fi +T,
2 12 8 720
1 5 3
=y + h{fi +E(fi - fi_1)+E(fi —2f + fi_2)+§( f,—3f_, +3f_,—f_;)
251
+_

g i 4 +6fi, —4fi + 1, )}”5

=y, + 7—20 (1901, — 2774, +2616f_, —1274f, , +251f_,} +T, (12)

where

T 2475 poge gy - 475

> 1440 1440 h*y™(&) (13)

is the local truncation error. Hence, Eq. (12) is called fifth order predictor method.

2.2. Description of Corrector Method

Consider the k+1 data values, (%, fi1), (%, ), (X0 fit)see oo (Xer Fioer) Which include

the current data point. For this data, we fit the Newton’s backward difference interpolating
polynomial of degree k and we get:

p(X)=f (X +sh)=f(x,,)+(s—-1)Vf (xi+1)+(s_—1)sv2f (Xin)+-..

2!
14
Jr(s—l)s(s+1)(s+2)...(s+k—2)vkf(XM)JF_I_kC (14)
(k)!
where
S:X;]Xi y X=X =(X=%) = (X,, —%)=sh—h=h(s-1),
Te - (s—1)s(s+1)(s+2)...(s+k-1) L6 () (15)

(k+1)!
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is the error term, when ¢ lies in some interval containing the points X;,;, X, Xi_ys.--, X;_,.; and
X.

The limit of integration in Eq. (4) becomes:

X=X =8=0, X=X, =5=1and dx=hds. (16)

i+1

Thus, replacing f (x, y) by p.(x) in Eq. (4) and using Eq. (14) in Eq. (4), we get:

i+1 i+1

1 _ —
ym:yi+hj{fi+l+(s—1)vn+1+(S 21)svzf_ (S gag +..}ds (17)
0

Here,
l.(S—l)dS=_?l, i(s—l)sds=%l, l.(s—l)s(s+1)ds=_71,
_:[(s—l)s(s +1)(s+2)ds :_3—1;, l'(s—l)s(s +1)(s+2)(s+3)ds = _79 (18)

Hence, from Eq. (17), we get:

1 1 1 19 9
=y, +h{f  —=Vf ——V°f ——Vf ——V*f ——V°f —... 19
y|+l yl { i+l 2 i+l 12 i+l 24 i+1 720 i+1 480 i+1 } ( )

Using Eq. (15), we obtain the error term as:

t(s—1)s(s+1)(s+2)...(s+k-1)

c _ |k+2 (k+l)
Te=h ! (k+1)! NCY
=hk+2jgc(s)f<k*l>(§k)ds, 0<& <1 (20)
where
1
gc(s)z(k+l)!{(s—1)s(s+1)...(s+k—1)} (21)

By choosing different values for k, different corrector methods will be obtained. So, as we
have discussed before we choose k for fifth order, which implies k =4.
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i.e, by choosing k =4, we get the method:

1 1 1 19
=Y +hif Vi =V ——Vf V' 4T
y|+1 yl { i+l 2 i+l 12 i+l 24 i+l 720 |+l} 4

1 1 1

=Y +h{fi+l_5(fi+l_ f)——(fi—-2f+ fi—l)_ﬂ

12 ( fi+1 _Bfi +3fi—1 - 1Eifz)

19
_7_20( fa—4f+6f —4f ,+ fis)} +T,
—y + 7—20 (251f , +646f —264f , +106f ,—19f 14T, (22)
where
-9 -9
T, =—h f®(g,) =—h°y® 23
+= 780 (&) 2a0" Y (&) (23)

is the local truncation error. Hence Eq. (22) is called fifth order corrector method. So that, we
use Egs. (12) and (22) for solving quadratic Riccati differential equation in Eq. (1) with Eq.

).

Remarks:
For using the methods, we require the starting values Y,, ¥;, Y,, Y;-
2. The required starting values for the application of predictor-corrector methods are

obtained by using any single step method like Euler’s method, Taylor series method or
Runge-Kutta methods.

3. Stability and Convergence Analysis

Definition 1. Let A4,4,,...,4, are the (not necessarily distinct) roots of the characteristic
equation given by:

p(4)=4"-a A"~ —ad-8,=0 (24)
associated with the multistep difference method of Egs. (12) and (22) given as:

Yia=aaYita oYiat Y« +hF(Xi,h, Yiar Yir oo yi+1—k)’
Yo=a&, Y=oy, ..., Yyq=0,,, foreach i=k-1, k,...,N -1, (25)

where a,,a,,..., a,,; are constants.
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If |4|<1, for i=1,2... .k, and all roots with absolute value 1 are simple roots, then the
difference method is said to satisfy the root condition.

Definition 2 (Stability) [14]:
i. Methods that satisfy the roots condition in which A = 1 is the only root of the
characteristic equation with magnitude one are called strongly stable.
ii. Methods that satisfy the root condition and have more than one distinct root with
magnitude one are called weakly stable.
iii. Methods that do not satisfy the root condition are called unstable.

Theorem 1: The fifth order predictor method in Eq. (12) is strongly stable.

Proof: The fifth order predictor method in Eq. (12) can be expressed as:
Vi =Y +hF (X Vit Vi Yias Yia) (26)
where

1
F (Xi’h1 Yiear Yir--or yi—3’yi—4) 2%{190]} (Xi1 yi)_2774f (Xi—l’ 3#1)"‘2616f (Xi—21 yi—z)

12745 (X5, Vi s )+ 25LF (X, Vo))
27)

In this case, we have: k=5, a,=a,=a,=4a,=0, and a, =1.
The characteristic equation for the method becomes:

p(2)=2°-2'=2*(21-1)=0
= A=) 4=4=4=4=0 (28)

are the roots of the polynomial.
Therefore, it satisfies the root condition and is strongly stable by Definition 2 (i).
Theorem 2: The fifth order corrector method in Eq. (22) is also strongly stable.

Proof: The fifth order corrector method in Eq. (22) can be expressed as:

Vi =Y +hF (X, 0 Y Vi Yis) (29)
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where

1
F (N, Vs 2 Vi yi_3)=ﬁo{251f (Xisas Vies) +646 T (X, y;) = 2641 (X4, Vi)

+106 (X5, ;o) =19 (X5, Vo)

(30)
Following the similar procedure as we have done in Theorem 1, here,
k=4, a,=a,=a,=0, a,=1 (31)
The characteristic equation for the method becomes:
p(A)=2*-2°=2°(1-1)=0 (32)
Thus, this polynomial has roots
=1 A=0=X=4, (33)

Therefore, it satisfies the root condition and is strongly stable by Definition 2 (i).

Definition 3 (Consistency): The method is consistent, if the local truncation error
T.(h)—>0ash—0.

From Eqgs. (13) and (23), we have:

-9 475
T, =—h°y©(&,) and T, = ——h®y® 34
s =gV (&) s=Taao" Y (%) (34)

Thus, T,(h) >0 as h—0 for k=4, 5.

Therefore, the methods in Eq. (12) and (22) are consistent by Definition 3. Hence, they are
convergent of fifth order. Since, consistency + stability < convergence.

4. Numerical Examples and Results

To validate the applicability of the methods, three model examples of quadratic Riccati
differential equations with initial conditions have been considered. Since all predictor-
corrector methods are not a self-starter, we take the classical Runge-Kutta (RK4) method for
the first four nodal points. For each number of nodal points N, the pointwise absolute errors

are approximated by the formula, ||E||=|y(x)—y;|, for i=0,1,2,---,N, where y(x) and Y,
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are the exact and computed approximate solution of the given problems respectively, at the
nodal point X;. Numerical examples are given to illustrate the efficiency and convergence of
the methods.

Example 1. Consider the following quadratic Riccati differential equation, Vinod and Dimple
[5]; Khalid et al. [12],

y'(X)=1+y*(x), 0<x<1,

35
y(0) =0 )

where the exact solution of this equation is y(x) =tan x.

Table 1. Pointwise absolute errors for Example 1 with different values of N.

Present Method
X Vinod and N =100 N =100 N =200 N =300 N =400 N =500
Dimple [5] Refinement

0.01 2.5001250e-07 | 8.3330e-13  8.3330e-13  5.2076e-14  1.0285e-14 3.2543e-15 1.0651e-15
0.02 2.0004001e-06 | 1.6657e-12  1.6657e-12  1.0409e-13  1.3538e-14 3.1954e-15 1.0443e-15
0.03 6.7530387e-06 | 2.4961e-12  2.4961e-12  1.0114e-13  1.3108e-14 3.0809e-15 1.0131le-15
0.04 1.6012809e-05 | 3.3232e-12  2.3825e-12  9.6610e-14  1.2476e-14 2.9421e-15 9.7145e-16
0.05 3.1289104e-05 | 3.1598e-12  3.1590e-12  9.0469e-14  1.1616e-14 2.7339%e-15 9.0206e-16
0.06 5.4097349e-05 | 2.9452e-12  2.9438e-12  8.2712e-14  1.0547e-14 2.4772e-15 8.2573e-16
0.07 8.5960526e-05 | 2.678%-12  2.6768e-12  7.3316e-14  9.2426e-15 2.1788e-15 7.3552e-16
0.08 1.2841072e-04 | 2.3600e-12  2.3571e-12  6.2270e-14  7.7161e-15 1.8319e-15 6.2450e-16
0.09 1.8299066e-04 | 1.9876e-12  1.9836e-12  4.9488e-14  5.9674e-15 1.4155e-15 4.8572e-16
0.1  2.5125533e-04 | 1.5604e-12  1.5553e-12  3.4958e-14  3.9829%e-15 9.4369e-16 3.3307e-16

Table 2. The maximum absolute errors for Example 1 with different values of N.

N =50 N =100 N =200 N =300 N =400 N =500
1.6183e-07 6.6504e-09 2.3871e-10  3.2945e-11  8.0336e-12 2.6552e-12
Refinement

1.7156e-07 6.7519e-09  2.3963e-10  3.3001e-11  8.0413e-12 2.6570e-12

1.6 T T T T T
—&— Numerical Solution

Qal Exact Solution i

1.2 bl

1+ -

0.8 -

y-numerical solution

0.6 !

0.4} .

0.2 !

o r r r r r r r r r
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
X

Fig. 1. Numerical solution versus exact solution for Example 1 when N = 10.
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Example 2. Consider the following quadratic Riccati differential equation, Gemechis and
Tesfaye [4]; Fateme and Esmaile [6],

y'(X) =e* —e¥ + 2 y(x) —e*y?(x), 0<x<1,

(36)
y(0) =1
The exact solution of the given problem is given by y(x)=e".
Table 3. Pointwise absolute errors for Example 2 with different values of N.
X N=10 N =40 N=70 N =100 N =200 N =400
Present Method
0.1 1.1153e-07 4.5427e-10 2.5490e-11 4.1438e-12 1.2457e-13 4.6629e-15
0.2 2.6297e-07 4.3364e-10 2.4216e-11 3.9286e-12 1.1813e-13 4.8850e-15
0.3 4.6838e-07 4.1083e-10 2.2808e-11 3.6910e-12 1.1036e-13 4.8850e-15
0.4 7.4674e-07 3.8563e-10 2.1253e-11 3.4284e-12 1.0236e-13 4.8850e-15
0.5 7.2073e-07 3.5778e-10 1.9533e-11 3.1379e-12 9.325%-14 4.6629e-15
0.6 6.9197e-07 3.2699-10 1.7632e-11 2.8164e-12 8.3489%e-14 1.1102e-15
0.7 6.6020e-07 2.9297e-10  1.5530e-11 2.4616e-12 7.2387e-14 3.5527e-15
0.8 6.2508e-07 2.5537e-10  1.3208e-11 2.0699e-12 6.0396e-14 7.1054e-15
0.9 5.8627e-07 2.1382e-10  1.0642e-11 1.6369e-12 4.6185e-14 1.3323e-14
1.0 5.4337e-07 1.6790e-10 7.8062e-12 1.1582e-12 3.1530e-14 1.9096e-14
Gemechis and Tesfaye [4]
0.1 3.8296e-07 4.5427e-10 4.8711e-11 1.1722e-11 7.3475e-13 4.5963e-14
0.2 2.6297e-07 1.0710e-09  1.1484e-10 2.7633e-11 1.7317e-12 1.0880e-13
0.3 4.6838e-07 1.9073e-09 2.0451e-10 4.9211e-11 3.0835e-12 1.9384e-13
0.4 7.4674e-07 3.0404e-09  3.2600e-10 7.8447e-11 4.9163e-12 3.0909e-13
0.5 1.1237e-06 4.5748e-09 4.9051e-10 1.1803e-10 7.3965¢e-12 4.6496e-13
0.6 1.6338e-06 6.6511e-09  7.1312e-10 1.7160e-10 1.0753e-11 6.7191e-13
0.7 2.3239e-06 9.4596e-09 1.0142e-09 2.4406e-10 1.5293e-11 9.5124e-13
0.8 3.2569e-06 1.3257e-08  1.4214e-09 3.4203e-10 2.1432e-11 1.3305e-12
0.9 4.5182e-06 1.8390e-08 1.9717e-09 4.7445e-10 2.9730e-11 1.8439e-12
1.0 6.2225e-06 2.5327e-08  2.7154e-09 6.5340e-10 4.0941e-11 2.5673e-12
Table 4. Pointwise absolute errors for Examples 2 with different values of N.
X Fateme and Present Method
Esmaile [6] N =10 N =300
0.0 0.0000000000000 | 0.0 0.0
0.1 0.00034681435605 | 1.1153e-07 1.6209e-14
0.3 0.00067436472882 | 4.6838e-07 1.4655e-14
05 3.8747 x 1010 7.2073e-07 1.3989e-14
0.7 0.00067437189321 | 6.6020e-07 7.1054e-15
0.9 0.00034682221170 | 5.8627e-07 2.2204e-15
1.0 0.000000000000 5.4337e-07 6.2172e-15
Table 5. The maximum absolute errors for Examples 2 with different values of N.
N =50 N =100 N =200 N =300 N =400 N =500
1.4455e-10 4.2630e-12  1.2945e-13  1.9096e-14  1.6875e-14 4.4409e-15
Refinement
1.4327e-10 4.2437e-12  1.2923e-13  1.9096e-14  1.6875e-14 4.4409e-15
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Fig. 2. Pointwise absolute errors of Example 2 for different values of h .

Example 3. Consider the following quadratic Riccati differential equation, Gemechis and
Tesfaye [4]; Fateme and Esmaile [6],

y'(x)=1+2y(x) - y*(x), 0<x<1,

37
y(0)=0 37

where the exact solution of this equation is

Fig. 3.

y(x) =1++/2 tanh (ﬁx+0.5ln (ﬁ;m (38)

18 T T T T T T T T T
—©— Numerical Solution
160 ===== Exact Solution b

14 .

121 b

y-numerical solution

OcF r r r r r r r r r
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X

Numerical solution versus exact solution of Example 3 when N = 10.
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Table 6. Pointwise absolute errors for Example 3 with different values of N.

X N =10 N =40 N=70 N =100 N =200 N =400
Present Method

0.1 2.2551e-06 9.8491e-09 6.5613e-10 1.1501e-10 3.7895e-12 1.2192e-13
0.2 4.7763e-06 1.0576e-08 6.8253e-10 1.1788e-10 3.8127e-12 1.2154e-13
0.3 7.3083e-06 7.5309e-09 4.4688e-10 7.4441e-11 2.3045e-12 7.2109e-14
0.4 9.5635e-06 9.9895e-11 6.4516e-11 1.5673e-11 6.6713e-13 2.2982e-14
0.5 2.7825e-06 9.6406e-09 6.8248e-10 1.2102e-10 4.0088e-12 1.2823e-13
0.6 6.9705e-06 1.6943e-08 1.0936e-09 1.8762e-10 5.9928e-12 1.9307e-13
0.7 1.5393e-05 1.7084e-08 1.0377e-09 1.7402e-10 5.4168e-12 1.7675e-13
0.8 1.6632e-05 9.0960e-09 5.1689¢-10 8.4664e-11 2.5677e-12 9.0150e-14
0.9 7.1404e-06 3.1027e-09 1.9362e-10 3.2240e-11 9.8810e-13 1.6209e-14
1.0 1.0444e-05 1.3554e-08 7.5227e-10 1.2112e-10 3.5889%¢-12 9.3703e-14
Gemechis and Tesfaye [4]

0.1 2.2551e-06 9.8491e-09 1.0669e-09 2.8533e-10 1.6233e-11 1.0184e-12
0.2 4.7763e-06 2.0641e-08 2.2327e-09 5.3915e-10 3.3923e-11 2.1275e-12
0.3 7.3083e-06 3.1235e-08 3.3731e-09 8.1402e-10 5.1180e-11 3.2087e-12
0.4 9.5635e-06 4.0441e-08 4.3607e-09 1.0517e-09 6.6078e-11 4.1415e-12
0.5 1.1301e-05 4.7374e-08 5.1021e-09 1.2299e-09 7.7230e-11 4.8390e-12
0.6 1.2408e-05 5.1724e-08 5.5661e-09 1.3414e-09 8.4199%-11 5.2707e-12
0.7 1.2940e-05 5.3815e-08 5.7892e-09 1.3949e-09 8.7546e-11 5.4756e-12
0.8 1.3100e-05 5.4419e-08 5.8528e-09 1.4101e-09 8.8489¢-11 5.5316e-12
0.9 1.3141e-05 5.4381e-08 5.8450e-09 1.4079e-09 8.8322e-11 5.5178e-12
1.0 1.3245e-05 5.4260e-08 5.8236€-09 1.4019e-09 8.7889%e-11 5.5029¢-12

Table 7. Pointwise absolute errors for Examples 3 with different values of N.

X Fateme and Esmaile [6] Present Method
N =10 N =300

0.0 9.6780x 10" 0.0 0.0

0.1  0.000248944564121 2.2551e-06  5.0812e-13
0.3  0.0004481946615024 7.3083e-06  3.0248e-13
0.5  2.89441 x 10710 2.7825e-06  5.3524e-13
0.7 0.000374115023553 1.5393e-05  7.1365e-13
0.9  0.00017849475908 7.1404e-06  1.2368e-13
1.0 3.2516 x 1070 1.0444e-05  4.5808e-13

Table 8. The maximum absolute errors for Examples 3 with different values of N.

N =50 N =100 N =200 N =300 N =400 N =500
6.0022e-09 1.9281e-10 6.1084e-12  8.0802e-13  1.9695e-13 6.1950e-14
Refinement

6.0007e-09 1.9281e-10 6.1084e-12  8.0802e-13  1.9695e-13 6.1950e-14
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Fig. 4. Pointwise absolute errors of Example 3 for different values of h.

5. Discussion and Conclusion

In this paper, fifth order predictor-corrector method is presented for solving quadratic Riccati
differential equations. The stability and convergence of the method have been investigated.
The study is implemented on three model examples with exact solutions by taking different
values for N, and the computational results are presented in the Tables (1-8). The results
obtained by the present method are compared with the results of Gemechis and Tasfaye [4],
Vinod and Dimple [5], Fateme and Esmaile [6] and shows betterment.

Furthermore, from the Tables (1-5) it is significant that all of the absolute errors decrease
rapidly as h decreases, which in turn shows the convergence of the computed solution. Figs.
(1, 3) shows that the present method approximates the exact solution very well. Figs. (2, 4)
show that, as h decreases the absolute error goes to zero. This shows that the small step size
provides the better approximation. Briefly, the present method is stable, more accurate and
effective method for solving quadratic Riccati differential equations.
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