International Journal of Engineering & Applied Sciences (IJEAS)
Vol.8, Issue 3(2016)15-24

Tenth Order Compact Finite Difference Method for Solving Singularly Perturbed 1D

Reaction - Diffusion Equations

Fasika Wondimu Galu', Gemechis File Duressa’ and Tesfaye Aga Bullo®

"Department of Mathematics, Dilla University, Dilla, P. O. Box 419, ETHIOPIA
’Department of Mathematics, Jimma University, Jimma, P. O. Box 378, ETHIOPIA
e-mail: gammeefl@yahoo.com

Received date: July 2016
Accepted date: September 2016

Abstract

In this paper, tenth order compact finite difference method have been presented for solving singularly perturbed
two-point boundary value problems of 1D reaction-diffusion equations. The derivatives in the given differential
equation have been replaced by finite difference approximations and transformed to tri-diagonal system which can
easily be solved by Discrete Invariant Imbedding algorithm. The theoretical error bounds have been established
for the method. Three model examples have been considered to check the applicability of the proposed method. The
numerical results presented in tables show that the present method approximates the exact solution very well.

Keywords: Singular perturbation, compact differential difference method, reaction-diffusion equations.

1. Introduction

Any differential equation in which the highest order derivative is multiplied by a small positive
parameter & (O <egl 1) is called singular perturbation problem and the parameter is known as the

perturbation parameter. These types of problems arise frequently in many fields of applied
mathematics and engineering, like quantum mathematics, fluid dynamics, chemical reactions,
electrical network, nuclear physics, elasticity, hydro-dynamics, modeling of semiconductor
devices, diffraction theory and reaction-diffusion processes and many other allied areas. Classical
computational approaches to singularly perturbed problems are known to be inadequate as they
require extremely large numbers of mesh points to produce satisfactory computed solutions
Farrell et al. [1] and Roos et al. [2]. Detailed discussions on the theory of asymptotical and
numerical solutions of singular perturbation problems have been published (see [3 - 9]). So, the
treatment of singularly perturbed problems presents severe difficulties that have to be addressed
to ensure accurate numerical solutions (see [10 - 13]).

It is well-known fact that the solution of singular perturbation problem exhibits a multi-scale
character that is; there are thin layer(s) where the solution varies rapidly, while away from the
layer(s) the solution behaves regularly and varies slowly. However, most of the existing classical
finite difference methods which have been used in solving singular perturbation problems give
good result only when the mesh size is much less than the perturbation parameter which is very
costly and time consuming.
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In this paper, tenth order compact finite difference method is presented for solving second-order
self-adjoint singularly perturbed 1D reaction-diffusion problems. Compact finite difference
method is a finite difference method which employs a linear combination of three consecutive
points of derivatives to approximate a linear combination of the same three consecutive values of

a function y(x;), j=i—1,1, i+1. To validate the efficiency of the method, three modal examples

are solved for different values of the parameters, mesh length 2 and compare the maximum
absolute error with the more currently published papers.

2. Description of the Method

Consider the following singularly perturbed 1D reaction-diffusion equation of the form:

—e"(x) +a(x)y(x) = f(x); 0<x <1, (1)
with the Dirichlet boundary conditions
9(0) = a, y()= @)

where¢ is a small positive parameter (diffusion coefficient) such that 0 <& <<land «, B are
given constants and a(x); f(x) are assumed to be sufficiently continuously differentiable
functions such that a(x) >y > 0 foreveryx € [0, ] where y is some positive constant.

To describe the scheme, we divide the interval [0, 1] into N equal subintervals of mesh length 4

LetO=x,,x,,...,x, =1 be the mesh points. Then, we have x, =x, +ih, i =0,1,...,N.

For convenience, let a(x,)=a,, f(x,)=f, y(x,)=y., y'(x)=y, y"(x)=y!, y"(x)=y".
Assume that y(x) has continuous higher order derivatives on[0, 1].

Using Taylor series expansion, we have:
2 3 4 5 6 7 8

Vi = Vit hy[+ =yl ];y{”+Z!y“) Z e Z 7+ }; v+ Z v
e
Vi =y, —hy) +Z—2,yl - 3—3,y”’+ /:‘ Y= I;S v+ 26 - };7 v+ }: v
g B B o

Subtracting Eq. (4) from Eq. (3), we obtain the second order finite difference approximation
(6!y,) for the first derivative of y, is:

51 y1+1 Vi -

2h )
2
wherez, = s "
Adding Egs. (3) and (4), we obtain the second order finite difference approximation (5”y,)for

the second derivative of y, is:
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Sty = Vi =2V + Vi
cyi - h2 2 (6)
h2 *)
where 7, =
2 12 yl
Substituting Egs. (3) and (4) into Egs. (5) and (6) yields
Sty =y h* o, h ® h @, h* © 4 7
SISV 007 Ts040” 3628807 T @)
th
wherer, = ——— 'V +
39,916,800
h’ n h° h®
52y ="+ @ © 4 ® L a0
VTR 560" 01607 Tis14400” T ®)
th hZ
wherez, = o soos00” 127
Writing Eq. (1) at discretized mesh, we obtain
0  f
T Ly Ji 9
V=TV ©)
Differentiating Eq. (9) twice, four and six times respectively, we have
av , ill
yo =Gy S (10)
£
a2 14 a 14 f(4)
S e N (11)
613 " a'2 ” a; '(6)
= pepd —81—3f1~ _g_lzfi(4) T (12)
By applying 57 to y® in Eq. (6), we obtain:
PO = 52,0 _® (13)
Substituting Eq. (13) in Eq. (6) yields:
4 6 8
Siymyr iy o | B W lye g
12 360 20,160 1,814,400 (14)
h8 th h2
wherer, =7, ———— ¥ = ———— 1 =@
ST TT814,400 7 199584007 127
Substituting Egs. (10), (11) and (12) into Eq. (14), gives:
2 4 2716 278 4 6
5y, + h ah LG h a’h 53 pa h N ah -
12¢ 3608 20,160¢” 1 814 400g” ¢ 360  20,160¢
8
aih 2 562 fl(4) + h6 + h8 5(‘2 fl‘(6) - TS
. 1814,400¢ 20,160 1,814,400 °
i L+ ah’ N a’h’ N a’h’ N a’h® 52
126 360s®  20,160s° 1,814,400¢° ° (15)

17



Fasika Wondimu Galu, Gemechis File Duressa and Tesfaye Aga Bullo

By substituting Eq. (15) for the value y"into Eq. (1) and rearranging, we obtain:

a'h® a’h*  a’ht a’h®
—+————— 82y, H g — L ——— |y,
1,814,400¢& 12¢  360¢ 20,160¢

ah* a’h’ a’h® a’ht
= 14— . ’ S f+
[ 12¢  360¢* 20,160&° /i 1,814,400¢° -
2 ) 4 .2h6 .2h8 4 h6
h_+ azh + 4 - fi”+ 4 - 5czfi”+ h At LA, 4 f(4) (16)
12 360c 20,160¢ 1,814,400¢ 360 20,160¢
aht Wt
i S2FW 4 ©® 4 S2F© _ op
1,814,400¢ o 20, 160f 1,814,400 A :

Substituting Eq. (6) into Eq. (16) for (5”y,) together with

foa =2+ I o S =2+ S
S f === B -, S f" =" B )
O Y/ Y Y/ (R
cJi JE cJi h?
and rearranging, we obtain the equivalent three-term recurrence relation given by:
_Eiyi—l +Fiyi_Giyi+1:Hi’ i=12,..,N-1 (17)
476
“h
where E, = iz —al—3z G,
h”  1,814,400¢
2¢ a’h’ a’h? 11a,*h®
F=—+a+ +

i 2 ai 2 + 30
h 12¢  360¢” 226,800¢

a’h’ ah’ a.2h4 11613h6 a’h’
i E——— [t It ———+— it : T fiat
1,814,400¢ 12¢  360¢? 226 800&° 1,814,400¢
216 2 4 216 216
a-h h ah 1lah a-h
— " =+ ! " ! o+
1,814,400¢> Jio (12 360¢ 226,80052Jf’ 1,814,400¢> S
ah’ @ h* N 11a,h o ah’ @
1,814,400 """ | 360 226,800¢ 1,814,400~
L ,(6) 117’ f(6) L (6)
1,814,4007"" 226,800 1,814,400

Eq. (17) gives us the tri-diagonal system which can easily be solved by applying Thomas
Algorithm.

3. Convergence Analysis

Writing the tri-diagonal system Eq. (17) above in matrix vector form, we obtain
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where 4 =(m;;),1 <i, j <N —1is a tri-diagonal matrix of order N, with
& ai4h6
My = =5+ o3
h 1,814,400¢
2¢ a’h? aﬁh“ 11a,'h®
m; =— +a,+ +
h 12¢  360¢’ 226 ,800¢g°
g ai4h6
m;_, = __2+ P
h®  1,814,400¢
and C=H,
For i =1,2,3,..., N — 1 and with the local truncation error
4710 10
a ' h eh
r(h)y=—%% & __ ¢ a0y 19
)= 7728000 Y 19958400 (15
We also have
AY — T(h) = C (20)

whereY =(¥,,%,,7,,....7,)" denotes the exact solution and

7(h) = (z,(hy),7,(h)),...,T, (hy))" denotes the local truncation error.

Making use of Eq. (19) and Eq. (20), we obtain an error equation:

where E =Y Y = (e,,e,,....ey)".

Let S be the sum of elements of the i"" row of 4, then

N-1
S, = _Z‘{mlj , fori=1.
p=

2¢ a’h’ ai3h4 11a,*h® £ a'h’
=|=+a,+ + +l-t—
h 12¢  360¢&° 226 800¢” h 1 814,400¢°
242 4 6
Therefore, S, = iz+al, + 4 h T L 89a, h ;. fori=1
h 12¢ 360’ 1814 400¢

S = Zmij, fori=2,3,...N-2

& ah 2¢ a’h’ ai3h4 11a'h°
=2 | =Gt |+ o ta + +
h* 1,814,400¢ h 12¢  360&° 226 800¢”
2 372 4
, "h 3a,'h .
Therefore, S, =a, + A,h*>, where 4, R 2 for |al,| = minS;
128 360¢* 1 81,440s° 2<i<N-2

N—
z my_, ;,fori=N-1.
=
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& a*h® 2¢ a’h? ai3h4 11a,’n®
=l - t+t————— |+ | 5ta+ +
h 1 ,814,400¢° h 12¢  360¢” 226 ,800¢°
272 374 476
“h "h 89a," h
Therefore, S, , =iz+ a; + 27 4 ~+ ? - fori=N-1
h 126 360¢” 1,814,400¢
Since 0<¢& <<1, we can choose / sufficiently small so that the matrix 4 is irreducible and

monotone [7]; Then it follows that 4~ exists and its elements are non-negative.
Hence, from Eq. (21), we get

E=4" T(h) (22)
and
£]= 4" | Jran] (23)

Let m,, be the (k,i)" elements of A~'. Since m,; > 0, by the definition of multiplication of

matrices with its inverses we have

N-1
Yom,,.S, =1, k=1,2,.,N-1 1)

i=1
Therefore, it follows that

N-l_ 1
m,, < —— =—(25)
" min S, |a|
I<Si<N-1

We define |47 = max Z‘m,”‘and [700] = max |1;(R)-

1<i<N-1

From Egs. (20), (23) and (24) and (26), we obtaln.

N-1

e, =y m,.T(h), j=1..,N-I

|'—" I

IA
~

e. .
J
| i|
10

Therefore, e, < &, j=12,...,N-1

(h)

S

J = |ai
a 4
Where, k = —‘ yf”‘ —‘ ylm‘ which is a constant and independent of .
21,772,800¢° 19,958,400
Therefore, <o(h").

This implies that the method gives a tenth order convergence.

4. Numerical Examples

To demonstrate the applicability of the methods, two model singularly perturbed problems have
been considered. These examples have been chosen because they have been widely discussed in
the literature and their exact solutions are available for comparison.
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Example 1: Consider the following singular perturbation problem with constant coefficients:
—ey"+y=x,0<x<1
: .. 1
with boundary conditions y(0)=1, y(1)=1+ exp(— —j .

7z

The exact (analytical) solution is given by:

y(x)=x+ exp(— %)

The numerical solutions in terms of maximum absolute errors and its comparison with other
authors are tabulated in Table 1 for different values of ¢ and N.

Table 1 Maximum Absolute Error for Example 1.

& N=16 N=32 N =64 N=128 N =256
Our method
1/16 7.2164E-15 3.3307E-16 1.4433E-15 3.1086E-15 4.3299E-15
1/32 2.2993E-13 3.3307E-16 5.5511E-16 1.3323E-15 8.6597E-15
1/64 7.2617E-12 7.3275E-15 5.5511E-16 9.9920E-16 3.3307E-15
1/128 2.1337E-10 2.3015E-13 2.7756E-16 8.8818E-16 1.6653E-15
1/256 6.7755E-09 7.2617E-12 7.2720E-15 3.8858E-16 4.5075E-14
Fasika et al. [4]
1/16 8.0337E-09 1.2628E-10 1.9704E-12 2.6756E-14 3.1575E-13
1/32 6.4174E-08 1.0146E-09 1.5920E-11 2.7744E-13 3.3595E-13
1/64 5.0661E-07 8.1031E-09 1.2737E-10 1.9886E-12 44076E-14
1/128 3.7264E-06 6.4204E-08 1.0151E-09 1.5928E-11 2.7062E-13
1/256 2.9689E-05 5.0662E-07 8.1032E-09 1.2737e-10 1.9936e-12
Arshad and Pooja [10]
1/16 2.153E-08 1.082E-10 1.536E-12 2.942E-14 2.522E-13
1/32 2.629E-07 1.591E-09 1.130E-11 1.844E-13 1.331E-13
1/64 2.832E-06 2.150E-08 1.081E-10 1.601E-12 4 596E-14
1/128 2.591E-05 2.629E-07 1.591E-09 1.130E-11 1.907E-13
1/256 1.922E-04 2.832E-06 2.150E-08 1.081E-10 1.599E-12

Example 2: Consider the following singular perturbation problem with constant coefficients:
—&y"+y=—cos’(nx)—2¢er’ cos(2rx), 0<x<1

with boundary conditions y(0) =0 = y(1)

The exact (analytical) solution is given by:
)= exp(—(1-x)/vJe)+exp(-x/Je) |

1+exp(—1/ Je )

The numerical solutions in terms of maximum absolute errors and its comparison with other

authors are tabulated in Table 2 for different values of ¢ and N.

cos’(x)
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Table 2: Maximum Absolute Errors for Example 2

£ N=16 N =32 N =64 N =128 N =256
Our method
1/16 1.6536E-12 1.7208E-15 4.7184E-16 5.4123E-16 1.7208E-15
1/32 1.3279E-12 1.2906E-15 4.4409E-16 6.1062E-16 1.7764E-15
1/64 7.1339E-12 7.1609E-15 2.2204E-16 8.3267E-16 2.1094E-15
1/128 1.1333E-10 2.3015E-13 3.3307E-16 3.3307E-16 1.3323E-15
1/256 6.7755E-09 7.2617E-12 7.1054E-15 5.5511E-16 3.1641E-14
Fasika et al [4]
1/16 3.1216E-07 4.8731E-09 7.6124E-11 1.1864E-12 6.5059E-14
1/32 2.6300E-07 4.1289E-09 6.4591E-11 1.0078E-12 8.6264E-14
1/64 4.7141E-07 7.5487E-09 1.1898E-10 1.8661E-12 4.8017E-14
1/128 3.6957E-06 6.3668E-08 1.0067E-09 1.5801E-11 2.3137E-13
1/256 2.9667E-05 5.0624E-07 8.0973E-09 1.2727E-10 1.9914E-12
Arshad and Pooja [10]
1/16 4.707E-07 5.254E-09 7.265E-11 1.089E-12 5.001E-14
1/32 2.681E-07 3.897E-09 5.920E-11 9.230E-13 2.559E-14
1/64 2.603E-06 1.908E-08 9.803E-11 1.502E-12 4.968E-14
1/128 2.560E-05 2.607E-07 1.581E-09 1.119E-11 2.405E-13
1/256 1.920E-04 2.830E-06 2.149E-08 1.080E-10 1.579E-12

Example 3: Consider the following singular perturbation problem with constant coefficients:
x-1 —X

—£y"(x) + y(x) = 1+ 2e {exp (—j +exp (—j}
N W

with boundary conditions y(0)=0= y(1)
The exact (analytical) solution of the above problem is:

y(x)=1-(-x)exp (_sz —Xxexp (%j

The numerical solutions in terms of maximum absolute errors and its comparison with other
method are tabulated in Table 3 for different values of ¢ and N.
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Table 3: Maximum Absolute Errors for Example 3

£ N=16 N=32 N =064 N =128 N =256
Our method
1/16 3.7415E-14 5.5511E-16 1.8874E-15 3.8858E-15 7.4385E-15
1/32 7.1430E-13 8.8818E-16 4.4409E-16 1.7764E-15 4.4409E-15
1/64 1.7440E-11 1.7319E-14 8.8818E-16 1.9984E-15 4.4409E-15
1/128 4.2294E-10 4.5353E-13 4.4409E-16 8.8818E-16 2.3315E-15
1/256 1.1398E-08 1.2244E-11 1.2212E-14 9.9920E-16 5.6954E-14
Fasika et al [4]
1/16 3.0275 E -08 4.7605 E -10 74485 E -12 1.1768 E -13 3.5527E-15
1/32 1.5650 E -07 24759 E -09 3.8809 E -11 6.0718 E -13 1.1990 E -14
1/64 9.5977 E -07 1.5367 E -08 24161 E -10 3.7805 E -12 59619 E-14
1/128 6.0692 E -06 1.0376 E -07 1.6413 E -09 2.5820E-11 40390 E-13
1/256 42534 E -05 72759 E -07 1.1646 E -08 1.8308 E -10 2.8649 E -12
Arshad and Pooja [10]
1/16 6.409E-08 3.191E-10 6.235E-12 1.529E-13 2.813E-13
1/32 6.085E-07 3.754E-09 2.810E-11 5.647E-13 1.972E-13
1/64 5.331E-06 4.174E-08 2.139E-10 2.972E-12 1.043E-13
1/128 4.120E-05 4.329E-07 2.673E-09 1.794E-11 3.867E-13
1/256 2.669E-04 4.077E-06 3.162E-08 1.610E-10 2.255E-12

5. Discussion and Conclusion

The tenth order compact finite difference method has been presented for solving singularly
perturbed reaction-diffusion equations with dirichlet boundary conditions. Derivatives appearing
in the given differential equation are replaced by finite difference approximations obtained by
Taylor series expansions at the grid points. This gives a large algebraic tri-diagonal system of
equations to be solved by Thomas algorithm, and to obtain the solutions at the mesh points using
MATLAB software. Three model examples are given to demonstrate the efficiency of the
proposed method. The maximum absolute errors tabulated in (Tables 1 — 3) for different values of
the perturbation parameter ¢ and mesh size /4 are compared with some previous findings of other
methods reported in the literature. As it can be observed from the tables, the proposed method
improved the findings reported by authors’ given in [4] and [10].
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