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Abstract 
 
A discrete singular convolution method is presented for computation of the deflection analysis of 
beams resting on elastic foundation.. In the method of discrete singular convolution partial space 
derivatives of a function appearing in a differential equation are approximated by means of some 
kernels. Results are compared with existing solutions available from other analytical and numerical 
methods. The method presented gives accurate results and is computationally efficient. 
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1. Introduction 
 

Real physical systems or engineering problems are often described by partial differential 
equations, either linear or nonlinear and in most cases, their closed form solutions are 
extremely difficult to establish. As a result, approximate numerical methods have been widely 
used to solve partial differential equations which arise in almost all engineering disciplines. 
The most commonly used numerical methods for such applications are the finite element, 
finite difference and boundary element method and nowadays, most engineering problems can 
be solved by these methods to satisfactory accuracy if a proper and sufficient number of grid 
points are used.  
 
The analysis of structures on elastic foundations is of considerable interest and widely used in 
several fields such as foundation engineering, pavement and railroad engineers, pipelines 
application, and some aero-space structures. Many problems in the engineering applications 
related to soil-structure interaction can be modeled by means of a beam or a beam-column on 
elastic foundation. Although few type foundation model are exist, the Winkler foundation 
model is extensively used by engineers and researchers because of its simplicity. Generally, 
the foundation is considered as an array of springs uniformly distributed along the length of 
the beam.  A detailed explained of foundation models can be found in related references [1-
15]. In this paper, discrete singular convolution method technique is presented for 
computation of the static analysis of beams on elastic foundation.  The accuracy of the 
solutions is inferred by comparison with analytical and other numerical solutions.  
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2. Discrete singular convolution (DSC) 
 
Discrete singular convolutions (DSC) algorithm introduced by Wei [16].  Wei and his co-
workers [17-26] first applied the DSC algorithm to solve solid and fluid mechanics problem. 
These studies indicates that the DSC algorithm work very well for the vibration analysis of 
plates, especially for vibration and buckling analysis of micro and macro beams, plates and 
shells [27-66]. Furthermore, it is also concluded that the DSC algorithm has global methods’ 
accuracy and local methods’ flexibility for solving differential equations in applied 
mechanics. In a general definition, numerical solutions of differential equations are 
formulated by some singular kernels.  The mathematical foundation of the DSC algorithm is 
the theory of distributions and wavelet analysis.  Consider a distribution, T and )(tη as an 
element of the space of the test function. A singular convolution can be defined by [16] 
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where )( xtT  is a singular kernel. For example, singular kernels of delta type [17] 
 

)()( )( xδxT n ;    (n =0,1,2,...,).      (2) 
 

Kernel )()( xδxT  is important for interpolation of surfaces and curves, and )()( )( xδxT n  
for n>1 are essential for numerically solving differential equations. With a sufficiently smooth 
approximation, it is more effective to consider a discrete singular convolution [18] 
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where F (t) is an approximation to F(t) and {xk}is an appropriate set of discrete points on 
which the DSC (3) is well defined. Note that, the original test function (x) has been replaced 
by f(x). This new discrete expression is suitable for computer realization. The mathematical 
property or requirement of f(x) is determined by the approximate kernel T α . Recently, the 
use of some new kernels and regularizer such as delta regularized [19] was proposed to solve 
applied mechanics problem. The Shannon’s kernel is regularized as [20] 
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where  is the grid spacing. It is also known that the truncation error is very small due to the 
use of the Gaussian regularizer, the above formulation given by Eq. (1) is practically and has 
an essentially compact support for numerical interpolation. Equation (1) can also be used to 
provide discrete approximations to the singular convolution kernels of the delta type [18] 
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In the DSC method, the function f (x) and its derivatives with respect to the x coordinate at a 
grid point xi are approximated by a linear sum of discrete values f (xk) in a narrow bandwidth 
[x-xM, x+xM ]. This can be expressed as 
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where superscript n denotes the nth-order derivative with respect to x.. For example the 
second order derivative at x=xi of the DSC kernels for directly given 
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The discretized forms of Eq. (7) can then be expressed as 
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3. Beams on elastic foundation 
 
Numerous researchers have treated the linear and nonlinear analysis of beams on elastic 
foundation having various support conditions. Closed form solutions of the governing 
differential equations have been proposed in the literature [1-8]. In recent years, the problem 
of stability and vibration analysis of beam or beam-columns has been studied [9-15]. Consider 
a linear elastic beam of stiffness EI on a winkler elastic foundation of modulus of k. The 
governing differential equation for the deflection of the beam resting on elastic foundation in 
Fig.1 is  

q(x)kv
xd
vdEI 
4

4
       (9) 

 
where v defines the deflection of the beam, E is the modulus of the elasticity of the beam 
material, I is the moment of inertia of the cross-section, q(x) is the distributed lateral load, and 
k is the foundation modulus. By using DSC discretization the Eq. (9) takes the form 
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Fig.1. a. Beam on elastic foundation 

 
4. Results and conclusions  

A partially loaded beam on elastic foundation with 5 m is considered [67].  The uniformly 
distributed load (q=1 kN/m) is partially effected to the beam (from the 1 m inside of B 
support during 1 m). The results are listed in Table 1. The results are listed for two points (at 
x=3m and at x=4m). The beam have EI=45*103 kN /m2. The foundation stiffness is k=106 
kN/m2. It is shown that the reasonable accurate results have been obtained for DSC method 
using 7 points.  
 

Table 1. Deflections for beams for two points 

x (m) Ref. 67 DSC (N=7) DSC (N=9) (N=11) 

3 0.497*10-6 0.495*10-6 0.497*10-6 0.497*10-6 
4 0.518*10-6 0.517*10-6 0.518*10-6 0.518*10-6 
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