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Abstract 

Nanotubes have a great importance in the rising of nanotechnology. Carbon nanotubes are widely used and 
many works have been done about it. As the technology always need better materials with better properties, 
scientist have developed Carbon nanotubes to Silicon carbide nanotubes. In this work, the stability of the Silicon 
nanotube is investigated in the buckling case. Its stability has an important role since it is used in high-tech 
equipment. In this article, the buckling analysis SiCNT is investigated by using Euler-Bernoulli beam theory for 
different boundary conditions. Results are presented in figures and table. 
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1. Introduction 

Many works about the applications of carbon nanotubes (CNTs) and its durability have been 
done in the past decade. Due to their extraordinary mechanical and electrical properties, 
carbon nanotubes have been used in nano-sized devices and sensors, chemical laboratories, 
material engineering and even in biomechanics. The most exciting and interesting property of 
the CNTs is their very high mechanical strength (tensile and Young’s modulus). Many 
researches and analysis have been made about Carbon nanotubes by modeling it as beam and 
shells [16-26]. After a couple years of founding CNTs scientist have developed a new 
structure of carbon nanotube which is very much better in durability under high temperatures. 
This new structure has been called Silicon carbide nanotube (SiCNT). For example, Silicon 
carbide nanotubes can stay stable under 1000 0C (in air), whereas Carbon nanotubes are 
limited to stay stable until 6000C [1]. This specialty of SiCNTs provide to work with it under 
high-temperature, harsh environment nanotubes reinforced ceramics. SiCNTs obtain another 
kind of multiple-bilayer wall structure which allows the surface Silicon atoms to be 
functionalized readily with molecules. This special wall structure allows SiCNTs to undergo 
self-assembly and make it compatible with different kind of materials such as high-
performance fiber-reinforced ceramics and biotechnological applications. In order to obtain 
SiCNTs, The NASA Glenn Research Center has been collaborating with Rensselaer 
Polytechnic Institute [2]. Researches from the collaboration have developed several methods 
to obtain SiCNTs. Some of those methods are chemical conversion of CNTs to SiCNTs, 
direct SiCNT growth on catalyst, and template-derived SiCNTs [2]. More recently, [3] have 
synthesized SiNTs which are considered as a kind of self-assembled SiNTs which can form 
crystal structures. Ansari et al. have calculated the buckling behavior of single-walled silicon 
carbide nanotubes by using a 3D finite element method [5]. 
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2. Buckling analysis of silicon carbide nanotube 

The demonstration of silicon carbide nanotube and its continuum model is shown in Fig.(1) 
and Fig.(2). In order to calculate the critical buckling load of the model, Euler-Bernoulli beam 
theory is used for different boundary conditions. Results are obtained for both with and 
without surface effect. For modeling, L is the length; Ravg is average radius, Davg average 
diameter, t thickness, E Young’s modulus of the nanotube. 

 

 

 

 

 

Fig. 1. Demonstration of Silicon Carbide sheet 

Silicon (Si) is a nonmetallic chemical element from the carbon family (Group 14 of the 
periodic table). The name of silicon is coming from the Latin silex or silicis wich means ‘flint’ 
or ‘hard stone’. Amorphous elemental silicon was first isolated and described as an element in 
1824 by a Swedish chemist Jöns Jacob Berzelius. SiCNTs can be obtained by two different 
techniques. The first and the more stable one is Si atoms and C atoms are having alternating 
arrangement. In this structure each C atoms are bonded to three Si atoms. On the other hand in 
the second technique, two atoms of Si and one atom of C is bonded to each other. Studies 
have shown that the first technique is more effective and stable [4]. Here in Fig. 1, a single 
layer of SiCNT is demonstrated. Si atoms are shown in yellow color and Carbon (C) atoms 
are shown in grey. In order to obtain a nanotube from the sheet, similarly with graphene sheet, 
rolling the sheet is the basic (Fig. 2). 

Silcon carbide nanotubes are tubes which contain both Si and C atoms bonded each other. In 
this work, as it can be seen from figs. (1-2), the type of which three Si atoms are bonded to 
one C atoms. Calculations have been made for different types of boundary conditon by 
employing Euler-Bernoulli classical beam theory. The mechanical continuum model of 
SiCNT is shown in Fig. (3). The length of the nanotube is shown with ‘L’, the average radius 
with ‘Ravg’ and the thickness with ‘t’. In continuum model, the nanotube will be modeled as a 
perfect cylindrical shaped tube with a constant inner and outer diameter. The average radius 
‘Ravg’ is obtained by using the arithmetical average of the inner and outer radius. The 
thickness ‘t’ is the difference between the inner and outer radius. 
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Fig. 2. Demonstration of obtaining silicon carbide nanotube from a single layer of silicon 
carbide sheet   

3. Euler-Bernoulli formulation 

The buckling equation of a beam is: 
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If setting 
EI
P

2  , Eq.(1) can be simplified as: 

 
02  ıııv yy       (2) 

If setting rxey  , Eq.(2) can be simplified as: 

 
0224  rxrx eBreBr      (3) 
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Fig. 3. Real and continuum model of silicon carbide nanotube 

 
 
 
By reducing Eq.(3), we can obtain: 
 

0224  rr        (4) 
 

Solving Eq.(4), the result is: 
 

22 r      (5) 
02,1 r   and  ir 4,3   

  
2,1r  and 4,3r  are two pairs of single complex root of Eq.(4). 

     
By substitution roots into Eq.(5) and solving it, we obtain: 
 

4321 cossin CxCxCxCy         (6) 
 

1C , 2C , 3C , 4C are constants which can be obtained from boundary conditions. The first 
order derivative of Eq.(6) is: 

 
321 sincos' CxCxCy             (7) 

 
The second order derivative of Eq.(6) is: 
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xCxCy  cossin'' 2
2

2
1      (8) 

 
The third order derivative of Eq.(6) is: 
 

xCxCy  sincos''' 3
2

3
1      (9) 

 
For a beam which is Clamped-Free supported, the boundary conditions would be as 

followed: 
 

0)0(')0(  yy ,  0)(')(''')('' 2  lylyly     (10) 
 

By substituting boundary conditions into Eq.(6), Eq.(7), Eq.(8) and Eq.(9) we obtain: 
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As it is mentioned above 1C , 2C , 3C , 4C are constants and we can obtain those constant 
by using Eq.(11), Eq.(12), Eq.(13) and Eq.(14). The solution is obtained as follow: 

 
0)cos(5 l      (15) 

 
There are 2 possibilities which make the Eq.(15) equal to zero. 
 

 05        (16) 
0)cos( l       (17) 

 

By substituting 
EI
P

2 into Eq.(17) we can obtain: 
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So the buckling load can be obtained via this formula: 
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The solutions are similarly obtained for other types of boundary conditions. 
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3.1. Numerical examples 
 

In this study, the buckling of SiCNTs with various boundary conditions is investigated via 
classical Euler-Bernoulli beam theory. Some of the results which are showing the buckling 
loads for Clamped-Free, Simple-Simple, Clamped-Simple, Clamped-Clamped boundary 
conditions are in Figure 4.The elasticity modulus is E=0.62 TPa [1,18], the thickness is 
t=0.075 nm, the moment of inertia is I=πtRavg

3.( Ravg=Davg/2). As it can be seen in Fig 4, the 
buckling load is investigated for simply supported, clamped, propped and cantilever boundary 
conditions respectively. Fig.4 shows that the buckling load is decreasing dramatically with the 
increasing of length. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

               
    

Fig.4. Variation of buckling load of SiCNT with different boundary conditions. 
 

4. Concluding remarks 

Buckling analysis of silicon carbide nanotube (SiCNT) is investigated for variable boundary 
conditions. Present equations from literature are used in order to calculate the critical buckling 
loads. Results are presented in a figure.  
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