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Abstract 

In the present paper, the transfer matrix method (TMM) is to be employed for the first time in the open literature 
for the elastic analysis of variable-thickness disks made of functionally graded (FG) two orthotropic materials. 
Those materials are assumed to be continuously radially functionally graded (FG) based on the Voigt rule of 
mixture with two models. An exponential disk profile with two parameters is considered. Effects of the different 
boundary conditions (free-free, fixed-free, and fixed-fixed) and inhomogeneity indexes on the elastic response of 
the disk rotating at a constant angular speed are also examined. Additionally, direct numerical solutions of the 
problem with the complementary functions method (CFM) are presented in tabular forms together with the transfer 
matrix method solutions in which CFM was used as an assistant tool. It was observed that both location and 
amplitude of the maximum equivalent stress are affected by the grading models chosen.  Such differences become 
more obvious for small values of the inhomogeneity indexes. The maximum relative error may reach 18% for the 
two material grading models in fixed-free disks. Consequently, Model-I may be recommended for just the 
inhomogeneity indexes equal to or greater than 0.5.  

Keywords: Rotating disk, functionally graded, polar orthotropic, variable thickness, transfer matrix method, 
complementary functions method, initial value problem. 

1. Introduction 

Rotating disks are essential elements of turbine rotors, compressors, flywheels, automobile disc 
brake systems, gears, etc.  Today’s scientific works focus on the use of advanced materials so 
that discs can withstand much higher rotational speeds and resulting stresses.  

To serve the purpose above mentioned, ordinary anisotropic materials have been examined [1-
24].  The mechanical benefits of a material gradient may be significant in the design of such 
structures to enhance structural performance. As a class of nonhomogeneous isotropic advanced 
materials, low-cost functionally graded (FG) metal-ceramics play a significant role in this 
subject area [25-51]. Based on a chosen material grading rule, material properties may vary 
continuously along with one or more certain directions in FG metal-ceramics. From those, 
Eraslan and Akış [28] worked on the elastic analysis of FG parabolically-varying thickness 
disks. Based on a semi-analytical axisymmetric elastic solution, Bayat et al. [31] considered 
rotating hollow parabolic and hyperbolic disks.  Hojjati and Jafari [34] introduced two 
analytical methods, namely the homotopy perturbation method (HPM) and Adomian’s 
decomposition method (ADM), to obtain stresses and displacements in rotating disks with 
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variable thicknesses and densities. They also compared the result with the verified variational 
iteration method (VIM) solution. The comparison among the methods used in Ref. [34] showed 
that although the numerical results were almost the same, HPM is much easier, more 
convenient, and more efficient than ADM and VIM. Hojjati and Hassani [35] conducted a 
stress-strain analysis of rotating discs with nonuniform thickness and density for an elastic–
linear hardening disk material. They used variable material properties (VMP) theory for a 
theoretical solution, Runge–Kutta’s method for a numerical solution, and commercial finite 
element modeling for comparisons of their results. They suggested the VMP method which 
provides reliable means for complex discs. Nie and Batra [36] analyzed axisymmetric 
deformations of a rotating FGM nonuniform disk made of a rubberlike material that was 
modeled as isotropic, linear thermoelastic, and incompressible by using an Airy stress function 
and the differential quadrature method. They [36] also worked on the material tailoring for 
obtaining a constant linear combination of the hoop stress and the radial stress. By dividing the 
variable-thickness disk into sub-domains with uniform thickness, Hassani et al. [38] studied the 
elastic behavior of rotating FG- isotropic hyperbolic rotating disks based on of a semi-exact 
method of Liao’s homotopy analysis. Nejad et al. [41-42] examined exponentially FG disks 
subjected to internal and external pressures [41] and centrifugal forces [42]. Yıldırım [44] 
analytically formulated the exact elastic response of a power-law graded hyperbolic rotating 
disk subjected to the internal and external pressures including a rotation at a constant angular 
velocity under four physical boundary conditions. Based on both complementary functions and 
transfer matrix methods, Yıldırım and Kacar [45] introduced a versatile computer package 
program for the elastic analysis of arbitrarily FG-isotropic thick-walled annular structures under 
all possible boundary conditions, namely variable thickness disks, cylinders, and spheres. Gang 
[47] analytically studied the stress analysis of a simple-power law graded hyperbolic free-free 
rotating disk for four convergent disk profiles and negative inhomogeneity indexes.  Yıldırım 
[48] presented a comprehensive parametric study for a power-law graded hyperbolic rotating 
disk. Based on the transfer matrix approach, Yıldırım [49], considered six different material 
grading rules such as a simple power rule (P-FGM), an exponential function (E-FGM), a linear 
function (L-FGM), a Voigt mixture rule with the power of volume fractions of constituents (V-
FGM), a Mori-Tanaka scheme (MT-FGM), and a sigmoid function (S-FGM) with several 
parabolically/linearly/hyperbolically tapered disk profiles including uniform ones to study the 
elastic response of rotating disks made of FG metal and ceramic pairs (Al/Al2O3) under free-
free, fixed-free, and fixed-fixed boundary conditions. The computer program introduced in [45] 
was used in Yıldırım’s [49] study, and the transfer matrix was obtained with the help of the 
complementary functions method as in the present study. Khorsand and Tang [50], recently, 
employed an advanced algorithm to optimize the weight of a hollow FG varied thickness disk 
under thermoelastic loads based on a combination of a co-evolutionary particle swarm 
optimization (CPSO) approach coupled with a differential quadrature (DQ).   

In quest of searching for more advanced materials, the mechanical benefits of a material 
gradient have begun to be probed into anisotropic materials [51-61] instead of isotropic ones 
[25-50]. This group of materials, which are mainly in the scope of the present study, are called 
functionally graded (FG) anisotropic materials or are referred to as anisotropic and 
inhomogeneous materials.  There are, unfortunately, a very limited number of works on FG 
disks composed of anisotropic materials in the open literature [51-61]. Among these, Durodola 
and Attia [51] studied elastic stresses in a rotating hollow uniform disk made from FG 
orthotropic materials. Chen et al. [52] presented a 3-D analytical solution for a uniform 
transversely isotropy exponentially FG rotating disk.  Nie et al. [53] calculated numerically the 
required radial variation of the volume fraction of fibers for a rotating annular CR-disk 
composed of a fiber-reinforced composite. Kansal and Parvez [54] carried out stress analysis of 
orthotropic graded rotating annular disks under a parabolic temperature distribution. Lubarda 
[55] worked on the elastic response of uniformly pressurized cylindrically anisotropic hollow 
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uniform thin rotating disks by using both the finite difference method and a Fredholm integral 
equation. Peng and Li [56] also employed a Fredholm integral equation for elastic analysis of 
a hollow FG polar-orthotropic rotating disk under free-free and fixed-free boundary conditions.  
After deriving a confluent hypergeometric differential equation, Essa and Argeso [58] studied 
analytically and numerically the effects of the anisotropy degree on the elastic fields of polar 
orthotropic FG annular free-free and fixed-free rotating variable-thickness disks. Based on the 
finite difference method and Voigt mixture grading rule with powers, Zheng et al. [59] 
numerically studied elastic fields in a fiber-matrix FG variable thickness circumferentially 
aligned (CR) disk mounted on a rotating shaft and subjected to an angular deceleration.  Zheng 
et al.’s [59] study revealed that disk deceleration has no effect on the radial and hoop stresses 
except the shear stress. As an extension of Ref. [57], Yıldırım [60] proposed closed-form 
solutions for the elastic fields in a simple power-law graded polar orthotropic hyperbolically 
tapered disk under separate inner/outer pressures, and centrifugal forces due to the rotation at a 
constant angular speed. Yıldırım’s [60] formulas are capable of exact determination of the 
elastic behavior of continuously hyperbolically tapered disks made of a single isotropic 
material,  made of a single polar orthotropic material, or made of a nonhomogeneous material 
formed by functionally power-law graded two isotropic materials, or a nonhomogeneous 
material formed by functionally power-law graded two orthotropic materials. As the latest study 
in the related realm, Yıldırım [61] numerically investigated the elastic response of arbitrarily 
functionally graded polar orthotropic rotating disks having constant thickness. Anisotropy 
effects on the elastic response were examined numerically with both simple power and 
exponential material grading rules with the help of only complementary functions method 
(CFM). CFM solutions were verified with closed-form solutions to simple power gradation rule 
and uniform disks.  

As seen from the open literature that there are just three studies conducted by Essa and Argeso 
[58], Zheng et al. [59], and Yıldırım [60] on the elastic response of variable-thickness FG polar 
orthotropic rotating disks. The last work [60] is an analytical study which considers just 
hyperbolic thickness variation, and the simple-power material grading pattern. This was a great 
motivation for the author.  

This study is a continuation of References [45, 49, 60-61] to study the elastic response of 
exponentially varying thickness FG polar orthotropic rotating disks based on the combined 
complementary functions and the transfer matrix methods. As stated above, Yıldırım [49] used 
the transfer matrix method previously as in the present study for the variable thickness disks 
(parabolic, hyperbolic, and linearly varying) made of FG two isotropic materials that are 
metallic and ceramic (𝐸"(𝑟) = 𝐸'(𝑟) = 𝐸(𝑟)  and     𝜈"' = 𝜈'" = 𝜈). Yıldırım [49] revealed 
that the free-free and fixed-free variable thickness disks show better performance than the 
uniform ones under centrifugal forces. The present study also aims to compare the results of 
the frequently used two Voigt models for the gradation of two orthotropic materials. The author 
hopes that the findings of the present study will be very helpful to engineers and academicians.  

 

 

2. Mathematical Formulation and Solution of the Problem 

Under small deformations and a state of axisymmetric plane stress assumptions for thin plates, 
field equations of a variable thickness rotating nonhomogeneous disk made of a linear elastic 
polar orthotropic material in polar coordinates (𝑟, 𝜃) are reduced to [60] 
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𝜀"(𝑟) =
𝑑𝑢"(𝑟)
𝑟 ,						𝜀'(𝑟) =

𝑢"(𝑟)
𝑟  

𝜎"(𝑟) = −
𝐸'(𝑟)𝜈"'

𝜈'"(𝜈"'𝜈'" − 1)
𝜀"(𝑟) −

𝐸'(𝑟)𝜈"'
(𝜈"'𝜈'" − 1)

𝜀'(𝑟) 															

= 𝐶33(𝑟)𝜀"(𝑟) + 𝐶35(𝑟)𝜀'(𝑟) 

𝜎'(𝑟) = −
𝐸'(𝑟)𝜈"'

(𝜈"'𝜈'" − 1)
𝜀"(𝑟) −

𝐸'(𝑟)
(𝜈"'𝜈'" − 1)

𝜀' = 	𝐶35(𝑟)𝜀"(𝑟) + 𝐶55(𝑟)𝜀'(𝑟) 

6ℎ(𝑟)𝑟𝜎"(𝑟)8
9 − ℎ(𝑟)𝜎'(𝑟) + 𝜌(𝑟)ℎ(𝑟)𝜔5𝑟 = 0 

 
(1a) 
 
 
(1b) 
 
 
(1c) 
 
(1d) 

 

where Eq. (1a) is called the strain-displacement relations, Eqs. (1b) and (1c) are referred to as 
linear elastic stress-strain relations, and finally, Eq. (1d) is the equilibrium equation under the 
centrifugal forces. In Eq. (1), 𝑢"(𝑟) is the radial displacement, 𝜀"(𝑟) and 	𝜀'(𝑟) are the radial 
and circumferential strains, respectively; 𝜎=(𝑟) is the radial stress, 𝜎'(𝑟)is the hoop stress, 𝜔 is 
the constant angular velocity, 𝜌(𝑟) is the material density, ℎ(𝑟) is the disk thickness profile,  
𝐸"(𝑟) and 𝐸'(𝑟) are Young’s moduli along the radial and tangential directions, respectively; 
𝐶>?(𝑟) are the transformed on-axis in-plane stiffness terms (𝐸3 = 𝐸", 𝐸5 = 𝐸', 𝜈35 = 𝜈"'), in 
addition 𝜈"' and 𝜈'" are anisotropic Poisson’s ratios assumed to be constant in the formulation. 
Those anisotropic Poisson’s ratios are also related by Maxwell’s theorem as follows 

 
𝜈'"
𝐸'(𝑟)

=
𝜈"'
𝐸"(𝑟)

	 (2)	

It is worth noting that, the radial and circumferential strains must obey the following 
compatibility equation 

𝑑
𝑑𝑟 6𝑟𝜀'

(𝑟)8 − 𝜀"(𝑟) = 0	 (3)	

Navier equation which is in the form of a second-order differential equation with variable 
coefficients is derived from the field equations given in Eq. (1) as follows 

 

𝑑5𝑢"(𝑟)
𝑑𝑟 +

⎝

⎜⎜
⎛
1
𝑟 +

𝑑𝐶33(𝑟)
𝑑𝑟

𝐶33(𝑟)

+
𝑑ℎ(𝑟)
𝑑𝑟
ℎ(𝑟) ⎠

⎟⎟
⎞
	
𝑑𝑢"(𝑟)
𝑑𝑟 +

⎝

⎜⎜
⎛

−
𝐶55(𝑟)
𝑟5𝐶33(𝑟)

+
𝐶35(𝑟)
𝑟𝐶33(𝑟)

H
𝑑𝐶33(𝑟)
𝑑𝑟

𝐶33(𝑟)
+
𝑑ℎ(𝑟)
𝑑𝑟
ℎ(𝑟) I

⎠

⎟⎟
⎞
𝑢"(r)=	 −

𝜌(𝑟)𝜔5𝑟
𝐶33(𝑟)

 

 
 
(4) 

Equation (4) may be solved by using a technique developed for the solution of two-point 
boundary value problems (BVP), or it may be handled by a technique like transfer matrix 
[1,49,62-69] and complementary functions methods [24,61,70-75] or any of the others 
developed for the solution of initial value problems (IVP).  

The principal aim of the present study is to make use of the transfer matrix method in the 
solution of such kinds of problems.  The transfer matrix method allows accurate and economical 
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solutions to more complicated problems which may be presented in future works. As a by-
product, direct solutions to the same problem considered by the complementary functions 
method are also to be tabulated in the present work.  

To employ the transfer matrix method, firstly, Eq. (4) should be written as a first-order 
differential equation set as follows  

 
𝑑𝑢"(𝑟)
𝑑𝑟 = −

𝐸'(𝑟)𝜈"'
𝑟𝐸"(𝑟)

𝑢"(𝑟) −
(𝜈"'𝜈'" − 1)

𝐸"(𝑟)
𝜎"(𝑟)	

𝑑𝜎"(𝑟)
𝑑𝑟 = −

𝐸'(𝑟)(𝐸"(𝑟) − 𝐸'(𝑟)𝜈"'5 )
𝑟5𝐸"(𝑟)(𝜈"'𝜈'" − 1)

𝑢"(𝑟) + H
𝐸'(𝑟)𝜈"'
𝑟𝐸"(𝑟)

−
1
𝑟 −

𝑑ℎ(𝑟)
𝑑𝑟
ℎ(𝑟) I𝜎"

(𝑟) − 𝜌(𝑟)𝜔5𝑟 

 
(5a) 
 
 
 

(5b) 

Equation (5) is written in a more compact form of  

 
𝑑𝑺(𝑟)
𝑑𝑟 = 𝑫(𝑟)𝑺(𝑟) + 𝒇(𝑟)	 (6)			

where 𝑫(𝑟) is the differential matrix, 𝑺(𝑟) is the state vector and 𝒇(𝑟) is the nonhomogeneous 
vector. 

𝑺(𝑟) = O𝑢"
(𝑟)

𝜎"(𝑟)
P	

𝒇(𝑟) = O 0
−𝜌(𝑟)𝜔5𝑟P	

(7a)	

	
(7b)	

In the transfer matrix method, the general solution of Eq. (6) is given by [62] 

 

𝑺(𝑟) = 𝑭(𝑎, 𝑟)𝑺(𝑎) + V 𝑭(𝜉, 𝑟)𝒇(𝜉)𝑑𝜉
"

X
	 (8)	

 
In a few words, If both 𝑭(𝑎, 𝑟) and 𝑺(𝑎) are known in Eq. (8), then both the radial displacement 
and the radial stress are obtained at any surface of the disk in a straight forward. For the 
circumferential stress, utilizing Eq. (1), the following may also be written 

 

𝜎'(𝑟) = Z
𝐶335 (𝑟) − 𝐶355 (𝑟)

𝐶33(𝑟)
[
𝑢"(𝑟)
𝑟 + \

𝐶35(𝑟)
𝐶33(𝑟)

] 𝜎"(𝑟)	
(9)	

On the eve of the application of Eq. (8), both the overall transfer matrix and, then, the unknown 
elements of the initial state vector, 𝑺(𝑎), should be determined. If the elements of the 
differential matrix are not a function of the radial coordinate, then, it is possible to obtain a 
closed-form solution for the transfer matrix elements [49, 62, 69]. Otherwise, a numerical 
solution technique like the complementary functions method as in the present study or any 
ordinary differential equation set solver in the case of variable coefficients may be used. As 
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may be guessed from Eq. (5), since the elements of the differential matrix become more 
complex functions due to the variation of both the material and geometrical properties of the 
disk, it is suitable to solve directly the related differential equations instead of using some 
approximate methods to get much more accurate elements of the transfer matrix. Both the 
material orthotropy [61] and the thickness gradient [49] significantly influence the accuracy of 
the transfer matrix. 

The transfer matrix satisfies a similar differential equation with the state vector in Eq. (6) in 
case of   𝒇(𝑟) = 0 62. 

 
𝑑𝑭(𝑎, 𝑟)
𝑑𝑟 = 𝑫(𝑟)𝑭(𝑎, 𝑟)	 (10)	

The numerical solution of Eq. (10) under Kronecker delta initial boundary conditions gives the 
transfer matrix in the numerical form [62-63,73-75] 

 

𝑭(𝑎, 𝑎) = 𝑰	 (11)	

In Eq. (11), 𝑰 is the unit matrix. In the present study, the numerical solution of Eq. (10) under 
boundary conditions given in Eq. (11) was achieved with the help of the complementary 
functions method whose details were presented in References [24, 61].  This combined 
technique has already been used successfully in some of the author’s previous studies [73-75].  

Immediately after the numerical determination of the transfer matrix, the unknown elements of 
the initial state vector may be established. To do this, Eq. (8) is written at 𝑟 = 𝑏, the boundary 
conditions given at inner and outer surfaces are then implemented into the equation. The 
boundary conditions considered in the present study are presented in Table 1. After 
implementation of those boundary conditions, the whole elements of the initial state vector are 
calculated from the following equations (see Appendix). 

 

𝑺(𝑎)a"bbca"bb = O𝑢"
(𝑎)

𝜎"(𝑎)
P = d

𝜔5 ∫ 𝐹5,5(𝜉, 𝑟)𝜌(𝜉)𝜉𝑑𝜉
g
X
𝐹5,3(𝑎, 𝑏)

0
h	

𝑺(𝑎)a>ibjca"bb = O𝑢"
(𝑎)

𝜎"(𝑎)
P = d

0
𝜔5 ∫ 𝐹5,5(𝜉, 𝑟)𝜌(𝜉)𝜉𝑑𝜉

g
X
𝐹5,5(𝑎, 𝑏)

h	

𝑺(𝑎)a>ibjca>ibj = O𝑢"
(𝑎)

𝜎"(𝑎)
P = d

0
𝜔5 ∫ 𝐹3,5(𝜉, 𝑟)𝜌(𝜉)𝜉𝑑𝜉

g
X
𝐹3,5(𝑎, 𝑏)

h	

(12a)	
	

	
(12b)	

	

	
(12c)	
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Table 1. Boundary conditions considered [44] 

Free-Free Fixed-Free Fixed-Fixed 
 

 
   

𝜎"(𝑎) = 0	

𝜎"(𝑏) = 0	

𝑢"(𝑎) = 0	

𝜎"(𝑏) = 0	

𝑢"(𝑎) = 0	

𝑢"(𝑏) = 0	

3. Verifications of the Results 

For the sake of simplicity, the application of this method may be shown on the simple model of 
Eq. (5) governs the elasto-static behavior of non-uniform disks made of any arbitrarily 
continuously graded polar orthotropic materials. The disk thickness may vary along the radial 
coordinate according to any differentiable function.  

In the present study, a two-parameter exponential function proposed by Eraslan and Orcan [76] 
is studied with  𝑎 = 0.01𝑚, 𝑏 = 0.1𝑚	, ℎn = 𝑎, 𝑚 = 0.6, and	𝑘 = 0.8 (Fig. 1). 

 

ℎ(𝑟) = ℎn𝑒
cs("g)

t
	 (13)	

In the present study, a simple Voigt mixture rule is utilized with a power of volume fraction of 
constituents based on the two models (Fig. 2) 

 

𝑉vw = x
𝑟 − 𝑎
𝑏 − 𝑎y

z
, 𝑛 ≥ 0	

𝑉vww = \
𝑟z − 𝑎z

𝑏z − 𝑎z] , 𝑛 > 0	

(14a)	

	
(14b)	

 

 
Fig. 1. The exponential disk profile 
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Where 𝑛 is called the inhomogeneity parameter,  𝑉v stands for the volume fraction of 
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 − 𝐵, superscripts show the model number. The radial variation of the effective 
material properties such as 𝐸"(𝑟), 𝐸'(𝑟),	 and 𝜌(𝑟) are then defined by the following 
expression. 

 

𝑃(𝑟) = 𝑃�𝑉� + 𝑃v𝑉v = 𝑃�(1 − 𝑉v) + 𝑃v𝑉v = (𝑃v − 𝑃�)𝑉v + 𝑃�	 (15)	

In Eq. (15), the outer surface is to be 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 − 𝐵 rich (woven Glass fiber/Epoxy prepreg) 
while the inner surface is 𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 − 𝐴 rich (An injection molded Nylon 6 composite 
containing 40 wt% short glass fiber) (Table 2). The same gradation of Eq. (14b) was originally 
used by Peng and Li [56] for uniform thickness polar orthotropic FG annular disks. 

It is worth noting that, in the present numerical analysis, the arithmetic mean of anisotropic 
Poisson’s ratios of two orthotropic materials is considered.  

 

 
Fig. 2. Volume fraction models considered in this work 

 
 

Table 2. Anisotropic constituent materials and their properties. 
 𝐸"	(GPa) 𝐸'(GPa) 𝜌 (kg/m3) 𝜈"' 
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 − 𝐴 [19-20, 56] 12.0 20.0 1600 0.21 
𝑀𝑎𝑡𝑒𝑟𝑖𝑎𝑙 − 𝐵 [19-20] 21.8	 26.95	 2030 0.15 

 
4. Validation of he Present Formulation 

The followings are used for dimensionless displacement and stresses 

𝑢
_
" =

𝐸n
𝜌n𝜔5𝑏� 	𝑢", 𝜎

_
" =

𝜎"
𝜌n𝜔5𝑏5 , 𝜎

_
' =

𝜎'
𝜌n𝜔5𝑏5 

(16) 
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In this section, 𝜎n = 12	𝐺𝑃𝑎, 𝜌n = 1600 𝑘𝑔 𝑚�⁄  have been used in Eq. (16) to calculate the 
non-dimensional elastic fields in a uniform rotating disk made of FG orthotropic materials 
having properties given in Table 2. Peng and Li [56] studied this disk of 𝑎/𝑏 = 0.4 by using 
Model-II in Eq. (14b). The main difference between the present study and Ref. [56] is that the 
constant value of anisotropic Poisson’s ratios is taken differently.  That is, Peng and Li [56] 
used 𝜈"' = 0.21 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 along the radial coordinate while the present study considers the 
arithmetic mean of Poisson’s ratios, 𝜈"' = 0.18 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡. Since Ref. [56] presented the 
results in graphical forms, the comparison is to be made in Fig. 3. A perfect harmony can be 
seen in Fig. 3. Very minor differences in the values of the radial displacement may be due to 
the value of Poisson’s ratio used. 

 
Fig. 3. Validation of the present dimensionless results with the open literature (𝜎n = 12𝐺𝑃𝑎. 𝜌n =

3�����
s� , Free − Free) 

 

 
5. Numerical Examples 

Unless otherwise stated, 𝜎n = 20𝐺𝑃𝑎, 𝜌n = 1600𝑘𝑔/𝑚� are to be used in the calculation of 
dimensionless quantities in Eq. (16) for a non-uniform disk of 𝑎 𝑏⁄ = 0.1 in this section. 
Dimensionless elastic fields under free-free, fixed-free, and fixed-fixed boundary conditions 
are illustrated in Figs. 4-6 based on the two models. 

For the aim of comparison of the transfer matrix method (TMM) and the complementary 
functions method (CFM) solutions for an exponential disk based on the two models with n=3, 
some numerical results are given in the tabular form in Tables 3 and 4.  In those tables, the 
equivalent von-Mises stress under plane stress assumption is defined by 
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𝜎b� = �𝜎"5 − 𝜎"𝜎' + 𝜎'5	 (17)	

When comparing two models (Fig. 2), minor differences are observed in the variation of the 
same elastic properties for inhomogeneity indexes greater than the unit. However, when the 
inhomogeneity index approaches zero, viz., when the inhomogeneity index is strictly less than 
the unit, the significant differences become obvious. The effects of these on the numerical 
values of the elastic fields are to be discussed below. 

From Figs. 4-6, it is mostly observed that as 𝑛 increases the maximum displacement also 
increases while both the maximum radial stress and circumferential stress decrease. Those 
figures also show that the maximum radial dimensionless displacement is located at the outer 
surface under both free-free and fixed-free boundary conditions. However, it is in the vicinity 
of the mid surface, at 𝑟/𝑏 ≅ 0.6, for fixed-fixed boundaries. Model-II gives slightly higher 
maximum radial displacements than Model-I: 

 

(𝑢
_

")sXiw = 0.195274,								(𝑢
_

")sXiww = 0.2048695			 → 		𝑎𝑡		𝑟 = 𝑏	𝑤𝑖𝑡ℎ	𝑛 = 0.1	(𝐹𝑅𝐸𝐸 − 𝐹𝑅𝐸𝐸)					

(𝑢
_

")sXiw = 0.1877075,								(𝑢
_

")sXiww = 0.1985936		 → 		𝑎𝑡		𝑟 = 𝑏	𝑤𝑖𝑡ℎ	𝑛 = 0.1	(𝐹𝐼𝑋𝐸𝐷 − 𝐹𝑅𝐸𝐸)					

(𝑢
_

")sXiw = 0.05018			 → 		𝑎𝑡		𝑟/𝑏 = 0.618	𝑤𝑖𝑡ℎ	𝑛 = 0.1	(𝐹𝐼𝑋𝐸𝐷 − 𝐹𝐼𝑋𝐸𝐷)					

(𝑢
_

")sXiww = 0.05207			 → 		𝑎𝑡		𝑟/𝑏 = 0.595	𝑤𝑖𝑡ℎ	𝑛 = 0.1	(𝐹𝐼𝑋𝐸𝐷 − 𝐹𝐼𝑋𝐸𝐷)					

 
As to the maximum radial stress (Figs. 4-6), it is approximately at 𝑟/𝑏 ≅ 0.4 under free-free 
conditions, at the inner surface under fixed-free boundaries, and at the outer surface under fixed-
fixed boundary conditions. The maximum radial stress is in compression at fixed-fixed 
surfaces:   
 

(𝜎
_

")sXiw = 0.32585			 → 		𝑎𝑡		𝑟/𝑏 = 0.393	𝑤𝑖𝑡ℎ	𝑛 = 0.1	(𝐹𝑅𝐸𝐸 − 𝐹𝑅𝐸𝐸)					

(𝜎
_

")sXiww = 0.30113			 → 		𝑎𝑡		𝑟/𝑏 = 0.415	𝑤𝑖𝑡ℎ	𝑛 = 0.1	(𝐹𝑅𝐸𝐸 − 𝐹𝑅𝐸𝐸)					

(𝜎
_

")sXiw = 0.4797,					(𝜎
_

")sXiww = 0.383458		 → 		𝑎𝑡		𝑟 = 𝑎	𝑤𝑖𝑡ℎ	𝑛 = 0.1	(𝐹𝐼𝑋𝐸𝐷 − 𝐹𝑅𝐸𝐸)				

	(𝜎
_

")sXiw = −0.3232780,				(𝜎
_

")sXiww = −0.3229234		 → 		𝑎𝑡		𝑟 = 𝑏	𝑤𝑖𝑡ℎ	𝑛 = 0.1	(𝐹𝐼𝑋𝐸𝐷 − 𝐹𝐼𝑋𝐸𝐷)				

From the above, a major difference between the two models is observed in the maximum radial 
stress at the inner surface for 𝑛 = 0.1.  
 
Let’s now consider the maximum tangential stresses (Figs. 4-6). It is located immediately 
before or at just the inner surface under free-free boundary conditions, and at around mid-
surface under both fixed-free (at 𝑟/𝑏 ≅ 0.5) and fixed-fixed (at 𝑟/𝑏 ≅ 0.3) conditions: 
 

(𝜎
_

')sXiw = 0.59			 → 		𝑎𝑡		𝑟/𝑏 = 0.122	𝑤𝑖𝑡ℎ	𝑛 = 0.1	(𝐹𝑅𝐸𝐸 − 𝐹𝑅𝐸𝐸)					

(𝜎
_

')sXiww = 0.58			 → 		𝑎𝑡		𝑟 = 𝑎	𝑤𝑖𝑡ℎ	𝑛 = 0.1	(𝐹𝑅𝐸𝐸 − 𝐹𝑅𝐸𝐸)					

(𝜎
_

')sXiw = 0.397			 → 		𝑎𝑡		𝑟/𝑏 = 0.46	𝑤𝑖𝑡ℎ	𝑛 = 0.1	(𝐹𝐼𝑋𝐸𝐷 − 𝐹𝑅𝐸𝐸)					

(𝜎
_

')sXiww = 0.400			 → 		𝑎𝑡		𝑟/𝑏 = 0.483	𝑤𝑖𝑡ℎ	𝑛 = 0.1	(𝐹𝐼𝑋𝐸𝐷 − 𝐹𝑅𝐸𝐸)					

(𝜎
_

')sXiw = 0.161,			(𝜎
_

')sXiww = 0.155				 → 		𝑎𝑡		𝑟/𝑏 = 0.325	𝑤𝑖𝑡ℎ	𝑛 = 0.1	(𝐹𝐼𝑋𝐸𝐷 − 𝐹𝐼𝑋𝐸𝐷)					
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Fig. 4. Dimensionless elastic fields under free-free boundary conditions  
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Fig. 5. Dimensionless elastic fields under fixed-free boundary conditions  
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Fig. 6. Dimensionless elastic fields under fixed-fixed boundary conditions  

 
The maximum equivalent stress is located at the inner surface under free-free boundary 
conditions while it is at the outer surface for fixed-fixed ones (Fig. 7). From Fig. 7, a clear 
difference between the two models is observed in the value and location of the maximum 
equivalent stress under fixed-free boundary conditions. 
 

(𝜎
_

b�)sXiw = 0.4291,					(𝜎
_

b�)ww = 0.3430		 → 		𝑎𝑡		𝑟 = 𝑎	𝑤𝑖𝑡ℎ	𝑛 = 0.1	(𝐹𝐼𝑋𝐸𝐷 − 𝐹𝑅𝐸𝐸)				

	(𝜎
_

b�)sXiww = 0.3645		, (𝜎
_

b�)w = 0.37	 → 		𝑎𝑡		𝑟/𝑏 = 0.438	𝑤𝑖𝑡ℎ	𝑛 = 0.1	(𝐹𝐼𝑋𝐸𝐷 − 𝐹𝑅𝐸𝐸)	
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Table 3. Comparisons of the transfer matrix method (TMM) and the complementary functions method 
(CFM) elastic fields in the exponential disk based on the Model-I (n=3) 

r(m) 𝑢
_
" 𝜎

_
" 𝜎

_
' 𝜎

_
b� 

 CFM TMM CFM TMM CFM TMM CFM TMM 

 Free-Free 

0.01 0.05174 0.05174 0.00000 0.00000 0.51742 0.51742 0.51742 0.51742 
0.019 0.05994 0.05994 0.19084 0.19082 0.36828 0.36823 0.31901 0.31897 
0.028 0.08367 0.08366 0.23928 0.23925 0.36548 0.36543 0.32152 0.32148 
0.037 0.11157 0.11156 0.25696 0.25692 0.37444 0.37440 0.33169 0.33165 
0.046 0.13999 0.13997 0.25840 0.25836 0.38041 0.38036 0.33643 0.33638 
0.055 0.16659 0.16657 0.24710 0.24706 0.38065 0.38060 0.33451 0.33446 
0.064 0.18955 0.18953 0.22391 0.22387 0.37490 0.37485 0.32671 0.32667 
0.073 0.20747 0.20744 0.18866 0.18862 0.36362 0.36357 0.31498 0.31493 
0.082 0.21942 0.21939 0.14055 0.14051 0.34742 0.34738 0.30270 0.30267 
0.091 0.22494 0.22493 0.07827 0.07825 0.32679 0.32676 0.29553 0.29551 

0.1 0.22399 0.22399 0.00000 0.00000 0.30183 0.30183 0.30183 0.30183 

 Fixed-Free 

0.01 0.00000 0.00000 0.31646 0.31646 0.08738 0.08738 0.28308 0.28307 
0.019 0.03653 0.03653 0.26398 0.26400 0.26518 0.26521 0.26459 0.26460 
0.028 0.06899 0.06899 0.26941 0.26942 0.32118 0.32120 0.29867 0.29870 
0.037 0.10094 0.10095 0.27276 0.27278 0.34975 0.34978 0.31831 0.31834 
0.046 0.13161 0.13162 0.26778 0.26780 0.36430 0.36433 0.32691 0.32693 
0.055 0.15958 0.15959 0.25304 0.25306 0.36889 0.36892 0.32675 0.32678 
0.064 0.18340 0.18341 0.22776 0.22778 0.36554 0.36557 0.31975 0.31978 
0.073 0.20187 0.20189 0.19110 0.19113 0.35563 0.35566 0.30827 0.30830 
0.082 0.21418 0.21419 0.14198 0.14200 0.34022 0.34025 0.29598 0.29600 
0.091 0.21992 0.21993 0.07892 0.07893 0.32001 0.32003 0.28876 0.28877 

0.1 0.21910 0.21910 0.00000 0.00000 0.29523 0.29523 0.29523 0.29523 

 Fixed-Fixed 

0.01 0.00000 0.00000 0.14401 0.14401 0.03976 0.03976 0.12882 0.12882 
0.019 0.01622 0.01622 0.11362 0.11363 0.11676 0.11677 0.11522 0.11523 
0.028 0.02946 0.02946 0.10540 0.10541 0.13450 0.13451 0.12257 0.12258 
0.037 0.04080 0.04080 0.09165 0.09166 0.13630 0.13631 0.12036 0.12037 
0.046 0.04938 0.04939 0.06926 0.06927 0.12832 0.12833 0.11124 0.11125 
0.055 0.05415 0.05415 0.03727 0.03728 0.11247 0.11248 0.09923 0.09924 
0.064 0.05420 0.05420 -0.0051 -0.0051 0.08975 0.08976 0.09240 0.09241 
0.073 0.04891 0.04892 -0.0588 -0.0588 0.06080 0.06081 0.10356 0.10356 
0.082 0.03803 0.03804 -0.1250 -0.1250 0.02596 0.02597 0.13980 0.13980 
0.091 0.02163 0.02163 -0.2054 -0.2054 -0.0148 -0.0148 0.19843 0.19842 

0.1 0.00000 0.00000 -0.3021 -0.3021 -0.0619 -0.0619 0.27637 0.27637 
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Table 4. Comparisons of the transfer matrix method (TMM) and the complementary functions method 
(CFM) elastic fields in the exponential disk based on the Model-II (n=3) 

r(m) 𝑢
_
" 𝜎

_
" 𝜎

_
' 𝜎

_
b� 

 CFM TMM CFM TMM CFM TMM CFM TMM 

 Free-Free 

0.01 0.05218 0.05218 0.00000 0.00000 0.52180 0.52180 0.52180 0.52180 
0.019 0.06044 0.06043 0.19264 0.19262 0.37178 0.37173 0.32204 0.32200 
0.028 0.08422 0.08421 0.24170 0.24167 0.36908 0.36904 0.32470 0.32466 
0.037 0.11202 0.11200 0.25967 0.25964 0.37807 0.37803 0.33495 0.33491 
0.046 0.14014 0.14012 0.26116 0.26112 0.38395 0.38390 0.33963 0.33958 
0.055 0.16631 0.16629 0.24968 0.24963 0.38400 0.38395 0.33752 0.33747 
0.064 0.18881 0.18879 0.22610 0.22606 0.37794 0.37789 0.32941 0.32936 
0.073 0.20637 0.20635 0.19029 0.19025 0.36613 0.36608 0.31716 0.31712 
0.082 0.21812 0.21810 0.14153 0.14150 0.34904 0.34900 0.30407 0.30404 
0.091 0.22360 0.22358 0.07865 0.07862 0.32700 0.32697 0.29563 0.29561 

0.1 0.22267 0.22267 0.00000 0.00000 0.30005 0.30005 0.30005 0.30005 

 Fixed-Free 

0.01 0.00000 0.00000 0.31979 0.31979 0.08830 0.08830 0.28605 0.28605 
0.019 0.03686 0.03687 0.26684 0.26686 0.26788 0.26791 0.26737 0.26738 
0.028 0.06945 0.06946 0.27240 0.27242 0.32434 0.32436 0.30174 0.30176 
0.037 0.10132 0.10133 0.27583 0.27585 0.35302 0.35305 0.32145 0.32148 
0.046 0.13169 0.13170 0.27077 0.27079 0.36751 0.36754 0.32996 0.32998 
0.055 0.15923 0.15924 0.25577 0.25580 0.37194 0.37197 0.32959 0.32962 
0.064 0.18259 0.18260 0.23005 0.23007 0.36831 0.36834 0.32225 0.32228 
0.073 0.20070 0.20072 0.19280 0.19282 0.35791 0.35794 0.31027 0.31029 
0.082 0.21281 0.21282 0.14300 0.14302 0.34165 0.34167 0.29718 0.29720 
0.091 0.21850 0.21851 0.07930 0.07931 0.32007 0.32009 0.28871 0.28872 

0.1 0.21770 0.21770 0.00000 0.00000 0.29335 0.29335 0.29335 0.29335 

 Fixed-Fixed 

0.01 0.00000 0.00000 0.14493 0.14493 0.04002 0.04002 0.12964 0.12964 
0.019 0.01630 0.01630 0.11440 0.11440 0.11748 0.11749 0.11597 0.11598 
0.028 0.02955 0.02955 0.10617 0.10618 0.13532 0.13533 0.12336 0.12337 
0.037 0.04082 0.04082 0.09234 0.09235 0.13714 0.13716 0.12113 0.12114 
0.046 0.04928 0.04929 0.06976 0.06977 0.12918 0.12919 0.11199 0.11200 
0.055 0.05395 0.05395 0.03743 0.03744 0.11336 0.11337 0.10004 0.10005 
0.064 0.05397 0.05397 -0.0054 -0.0054 0.09064 0.09065 0.09346 0.09347 
0.073 0.04875 0.04875 -0.0597 -0.0597 0.06159 0.06160 0.10504 0.10504 
0.082 0.03800 0.03800 -0.1266 -0.1266 0.02649 0.02650 0.14167 0.14167 
0.091 0.02169 0.02169 -0.2075 -0.2075 -0.0147 -0.0147 0.20054 0.20054 

0.1 0.00000 0.00000 -0.3043 -0.3043 -0.0623 -0.0623 0.27846 0.27846 
 

 
Finally, Table 3 and 4 reveals that the results obtained by both methods overlap. Very minor 
differences between TMM and CFM solutions (the maximal relative error for the equivalent 
stress is about 10c£ for Model-I) may probably stem from the numerical integration technique 
used in TMM together with the FG orthotropic nature of the disk material and geometry. For 
example, when a uniform disk with power-law graded of a single orthotropic material is 
considered, two solution methods have been presented the same results to the seven digits after 
dot with the analytical solutions [61]. The maximum degree of precision numerical integration 
technique has been used in the present study in TMM. RK4 has been employed in CFM 
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solutions. When necessary, with the help of the properties of the transfer matrix method, it is 
also possible to increase the accuracy of the homogeneous and particular solutions without 
changing the accuracy of Runge-Kutta and numerical integration techniques. 
 
6. Discussion 
 
The complementary functions method (CFM) is one of the techniques in IVP solvers. It may be 
used directly or as an assistant tool as in the present study for solving some kinds of problems. 
The main feature of the problems to be directly handled by CFM is that there must not be any 
intermediate singular loads in the domain considered. For instance, the bending of a beam 
subjected to a singular force cannot be directly studied by CFM. To exemplify, concentric disks 
without the residual internal stresses may be studied by CFM by letting larger matrix 
dimensions. In these cases, both CPU time and the volume of the computer code also increase 
extremely.   
 
The transfer matrix method (TMM) is a more general solution method than CFM. Many 
complex problems may be considered by TMM. For example, concentric disks may be studied 
by TMM without increasing the size of matrices and also considering the residual internal 
stresses at the intermediate contact surfaces of the disks. Due to these reasons, and to build a 
foundation for such kinds of advanced problems [77-81], the transfer matrix method solution 
technique in which the transfer matrix has been obtained with the help of CFM is preferred in 
this study.  
 
In the method of CFM, the general solution of BVP in Eq. (4) reads [49] 
 

	 (18)	

Where  and  characterize the homogeneous solutions of Eq. (4) under prescribed 
Kronecker delta initial conditions (  and  for the determination of 

; and  and  for the determination of ) while is 
the nonhomogeneous solutions of Eq. (4) under zero initial conditions (  and 

); , and  are the other unknowns which are determined by plugging the 
physical boundary conditions in the solution (18). CFM solutions for both the radial 
displacement and the radial stress may be written in a compact form as 
 

	
(19)	

Yıldırım [49] also showed that the CFM solution inherently covers the fundamental matrix or 
the transfer matrix by an alias, as follows 

	

(20)	

 
As stated above, the accuracy of the numerical results strictly depends on the accuracy of the 
numerical transfer matrix. Both the material orthotropy [61] and the thickness gradient [49] 

)()()()( )2(
2

)1(
1

)0( rubrubruru rrrr ++=

)()1( rur )()2( rur
1)( =aur 0|/)( ==arr drrdu

)()1( rur 0)( =aur 1|/)( ==arr drrdu )()2( rur )()0( rur
0)( =aur

0|/)( ==arr drrdu 1b 2b

þ
ý
ü

î
í
ì

+
þ
ý
ü

î
í
ì
ú
û

ù
ê
ë

é
=

þ
ý
ü

î
í
ì

)(
)(

)()(
)()(

)(
)(

)0(

)0(

2

1
)2()1(

)2()1(

r
ru

b
b

rr
ruru

r
ru

r

r

rr

rr

r

r

ssss

1

)2()1(

)2()1(

)2()1(

)2()1(

)()(
)()(

)()(
)()(),(

-

ú
ú
û

ù

ê
ê
ë

é

ú
ú
û

ù

ê
ê
ë

é
=

aa
auau

rr
rurura

rr

rr

rr

rr
ssss

F



V. Yıldırım 

31 
 

significantly influence the accuracy of the transfer matrix. After the determination of the 
elements of the transfer matrix with a desired accuracy within the acceptable engineering errors, 
the solution is obtained by employing Eq. (8) in the transfer matrix method (see Appendix).  
 
In practice, a small part of the radial coordinate may be graded. The whole disk may compose 
of several disks with different profiles. The residual internal stresses due to the shrinking 
process including hub and blade pressures should be included in the analysis. As stated above, 
the transfer matrix method is to be a very useful choice for the solution of such types of 
problems. The author aims to step-by-step study more advanced problems based on the well-
founded analytical and numerical results. 
 
7. Conclusions  
 
Minimizing weight and maximizing strength in gas turbine discs in the aerospace industry, such 
as turbojet engines, are the main practical applications of functionally graded and rotating discs 
of varying thickness. Since there is no single FG-material type or thickness variation function 
that can be a recipe for all kinds of problems, different thickness functions (linear, exponential, 
hyperbolic, parabolic, etc.) and basic properties of FG-material components (isotropic, 
orthotropic, etc.) are currently studied in the existing literature. Contrary to producing 
inhomogeneous material from two isotropic materials, unfortunately, the number of studies 
based on inhomogeneous material from two orthotropic materials is not yet sufficient as the 
problem becomes more complex. One of the main aims of this study is to fill this gap to some 
extent with numerical solutions having acceptable precision. 
 
The problem chosen involves an elastic analysis of exponentially varying thickness rotating 
disks under three boundary conditions. Two orthotropic materials are graded based on a simple 
Voigt mixture rule with powers of volume fraction of constituents as the disk inhomogeneous 
and orthotropic material. Two models are used in the volume fraction of constituents. Results 
are tabulated and illustrated in graphical forms. There are no such significant differences in 
CPU-time and accuracy in the solutions by the two methods for the proposed example in which 
the disk consists of a single body having continuously varying material and thickness properties. 
 
Previous studies showed that decreasing thickness profiles from the inner surface towards the 
outer propose more suitable stress distributions than the uniform ones under centrifugal forces.  
Another scope of the present study is to have a comparison of two Voigt grading models for the 
same disk thickness profile. For the chosen material and disk profile whose thickness smoothly 
decreases from the inner surface towards the outer, in general, such remarkable differences are 
not observed between the results of the two material grading models for 𝑛 > 1.  They may be 
much more noticeable when different profiles and different orthotropic materials having 
different orthotropy degrees are used. Besides, if Model-I is used, the choice of inhomogeneity 
indexes, which are equal to or greater than 0.5, may be recommended. 
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Fig. 7. Dimensionless equivalent stresses under three boundary conditions based on the two models. 
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Appendix: Flowchart of TMM procedure 
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Notations  
𝑎, 𝑏 Inner and outer radii of the disk 

𝐶>?	(𝑖 = 1,2	𝑎𝑛𝑑	𝑗 = 1,2) Transformed on-axis in-plane stiffness terms 
𝑫 Differential matrix 

𝐸", 𝐸' Anisotropic Young’s moduli 
𝒇 Nonhomogeneous vector 
𝑭 Transfer matrix 
ℎ thickness 
𝑰 Unit matrix 

𝑘,𝑚 Constants for the disk profile 
𝑛 Inhomogeneity index 
𝑟, 𝜃 Radial and circumferential coordinates 
𝑺 State vector 
𝑢" Radial displacement 

𝑉�, 𝑉v Volume fractions of Materials A and B 
𝜔 Angular velocity 

𝜀", 𝜀' Radial and circumferential strains 
𝜈"', 𝜈'" Anisotropic Poisson’s ratios 
𝜌 Material density 
𝜎b� Von-Mises equivalent stress 
𝜎", 𝜎'	 Radial and circumferential stresses 
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