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Abstract:  

In the present study, influence of rotary inertia on the size-dependent free vibration analysis of embedded single-
layered graphene sheets is examined based on modified couple stress theory. Governing differential equations 
and corresponding boundary conditions in motion are derived by implementing Hamilton’s principle on the 
basis of Kirchhoff thin plate theory. Also, effect of elastic foundation is taken into consideration by using a two-
parameter elastic foundation model. Influences of additional material length scale parameter, mode number, 
elastic foundation and rotary inertia on the natural frequencies are investigated in detail. 
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1. Introduction 
In the recent years, small-sized structural elements like rod, beam, plate and shells have a 
wide range of applications in micro- and nano-electro mechanical systems (MEMS and 
NEMS) with the rapid developments in nanotechnology. Carbon nanotube has a one-
dimensional structure and is an allotrope of carbon, and one of the key structures in the 
nanotechnology applications. Carbon nanotubes were firstly discovered by Iijima, in 1991 as 
multi-walled carbon nanotubes (MWCNTs) [1]. Graphene sheets (GSs) have a two-
dimensional structure and possess advanced mechanical, electrical, and thermal properties. 
Due to their unique properties, graphene based micro or nano-devices are generally used in 
MEMSs and NEMSs for high frequency and high sensitive purposes. 
 

It has been observed from some experiments that there is a size effect on the 
deformation behavior of the micro-/nano-sized structures [2–4]. Because of the various 
difficulties in experimental studies, the researchers have tended to continuum mechanics 
approaches. However, the classical continuum models which are successful for modelling of 
macro-sized structural elements [5–22] fail to predict the mechanical behavior characteristics 
of small-sized structures. Consequently, several non-classical continuum theories have been 
developed such as couple stress theory [23–25], micropolar theory [26], nonlocal elasticity 
theory [27,28] and strain gradient theories [29–32] to determine the mechanical responses of 
such structures. 
 

Modified strain gradient theory (MSGT) was introduced by Lam et al. [3] in which the 
strain energy density includes higher-order deformation gradient tensors besides classical 
symmetric strain tensor. For linear elastic isotropic materials, the formulations and governing 
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equations contain three additional material length scale parameters relevant to higher-order 
deformation gradients in addition to two classical ones. This non-classical theory has been 
frequently employed to investigate the microstructure-dependent mechanical responses of 
beam [33–49] and plates [50–55].  

 
It is noted that if dilatation gradients and deviatoric stretch gradients are omitted, the 

formulation and governing equations of modified strain gradient theory will be turned into 
those of modified couple stress theory (MCST) elaborated by Yang et al. [56]. The difference 
between classical couple stress theory and this modified version is defined as the couple stress 
tensor is symmetric and only one material length scale parameter is included in MCST. This 
simpler theory has been utilized to analyze the bending, buckling and free vibration behaviors 
of microbeams [57–61] and microplates [62–72]. On the other hand, there are many studies in 
the scientific literature on the mechanical behavior characteristics of carbon nanotubes, 
microtubules, nanobeams and nanoplates based on nonlocal elasticity theory [73–86].  

 
The purpose of this study is to examine the influence of rotary inertia on the micro-

dependent free vibration analysis of embedded single-layered graphene sheets (SLGSs). 
Governing differential equations and corresponding boundary conditions in motion are 
derived by implementing Hamilton’s principle on the basis of Kirchhoff thin plate theory in 
conjunction with modified couple stress theory. Also, effect of elastic foundation is taken into 
consideration via Pasternak elastic foundation model. Influences of additional material length 
scale parameter, mode number, elastic foundation and rotary inertia on the natural frequencies 
are investigated in detail. 

 
2. Modified couple stress theory 
 
The modified couple stress theory was elaborated by Yang et al. [56]. Unlike the classical 
continuum theory, this popular theory contains an additional material length scale parameter 
associated with the rotation gradient tensor for prediction the microstructure-dependent 
deformation behaviors. In the framework of this elasticity theory, the strain energy U  in a 
linear elastic isotropic material occupying a volume V  is 
 

  
V ijijijij dVmU 

2
1        (1) 

 
where ij , ij , ijm , ij  are the components of classical stress and strain tensors, deviatoric part 
of the couple stress tensor, and symmetric curvature tensor, respectively [56] 
 

ijijkkij G 2        (2) 
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          (6) 

 
where  and G  are the well-known Lamé constants, ij  is the Kronecker delta, ijke  is the 
alternating symbol, l  is the additional material length scale parameter, iu  and i  are the 
components of displacement vector u and rotation vector θ, respectively. 
 
3. Dynamical model for a rectangular microplate 
 
The displacement fields for time-dependent deformations based on Kirchhoff’s plate theory 
can be expressed by considering a rectangular graphene sheet (see Fig. 1) as 
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where u , v , and w  denote the displacement components in x , y , and z  directions, 
respectively. Substitution of Eq. (7) in Eqs. (3), (5) and (6) yields the non-zero strain and 
rotation components of the SLGS as 
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Fig. 1. Coordinate system and continuum model of an embedded single-layered graphene 

sheet 
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The governing differential equations and associated boundary conditions for 

embedded SLGS can be obtained by implementing Hamilton’s principle [5] 
 

   tdWUT
T

 
0

0         (11) 

 
where T , U and W are the first variations of kinetic energy, strain energy, and work done 
by external applied forces, respectively. In view of Eq. (11), the following expression can be 
written on the time interval  T,0  as [62] 
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where   is the area of the plate middle surface, wk  and pk  are the Winkler and shear 
modulus of the elastic foundation, yyxyxx MMM ,, and yyxyxx YYY ,,  are the classical and non-
classical moments, and also 0I  and 2I  the mass moments of inertia terms defined as [65] 
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where h is the thickness of graphene sheet. After some mathematical manipulations, the 
equations of motion for the SLGSs in an elastic matrix can be expressed from Eq. (12) as:
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and the associated boundary conditions are defined as 
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where ( yx nn , ) denote the direction cosines of the unit normal to the boundary of the middle 
plane. The governing equation of motion for embedded SLGS surrounded by an elastic 
medium can be rewritten in terms of displacements by taking into consideration the effect of 
rotary inertia as follows: 
 























 
 2

2

2

2
22

2

2 )1(61
y
w

x
wkwkw

h
vlD pw

      
    

2

2

02

2

2

2

2

2

2 t
wI

y
w

x
w

t
I























        

(17) 

 
where D  is the classical bending rigidity  
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4. Analytical solution of free vibration problem 
 
In this section, the governing partial differential equation is analytically solved for free 
vibration of all edges simply supported embedded single-layered graphene sheets. In order to 
solve this equation, the following solution procedure is employed by using the separation of 
variables technique as 
 

 tBtAyxWtyxw  cossin),(),,(        (19) 
 
where A and B are the integral constants. These constants are easily found by using the initial 
conditions. Also, ),( yxW  is shape function and   is the natural frequency of the SLGS. 
Substitution of Eq. (19) into Eq. (17) yields 
 

0)1(61 2
2

2
0

224
2

2








 
 WIWIWkWkW

h
vlD pw     (20) 

 
where 4  is the biharmonic operator. On the other hand, the shape function can be expressed 
as the following Fourier series solutions 
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where mnC  is the undetermined Fourier coefficient. This means that Eq. (21) must satisfy the 
associated boundary conditions. By using Eq. (21) into Eq. (20), one expression can be 
obtained as  
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Finally, the natural frequency of SLGS with rotary inertia term ( 2I ) is expressed on 

the basis of modified couple stress theory as following 
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5. Numerical results and discussion 
 
In this section, several illustrative examples are given to show the effects of size dependency, 
foundation parameters and rotary inertia on the natural frequencies of simply supported 
square single layered graphene sheets surrounded by an elastic medium. Following 
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geometrical and material properties are used as: 06.1E TPa , 25.0v , 34.0h nm , 
2250 3/ mkg [62]. Also, the dimensionless foundation parameters are defined as 

D
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D
akK G

G

2

 .  

 
Table 1. Effects of size dependency and elastic foundation parameters on the fundamental 
frequency values (THz) of square graphene sheet with rotary inertia effect (a=b=15h, l=h, 

I2≠0) 

Kw KG=0 KG=15 KG=30 
CT MCST CT MCST CT MCST 

0 0.2648 0.6210 0.3465 0.6600 0.4123 0.6968 
20 0.2711 0.6237 0.3513 0.6625 0.4164 0.6992 
60 0.2833 0.6291 0.3608 0.6676 0.4244 0.7044 

100 0.2949 0.6344 0.3700 0.6726 0.4323 0.7088 
 

Table 2. Effects of size dependency and elastic foundation parameters on the fundamental 
frequency values (THz) of square graphene sheet without rotary inertia effect (a=b=15h, l=h, 

I2=0) 

Kw KG=0 KG=15 KG=30 
CT MCST CT MCST CT MCST 

0 0.2658 0.6232 0.3478 0.6624 0.4138 0.6993 
20 0.2721 0.6260 0.3526 0.6649 0.4179 0.7017 
60 0.2843 0.6314 0.3621 0.6700 0.4260 0.7066 
100 0.2960 0.6367 0.3714 0.6751 0.4339 0.7114 

 
Influences of size dependency and elastic foundation parameters on the fundamental 

frequency values of square graphene sheet with and without rotary inertia effect are tabulated 
in Tables 1 and 2, respectively. It is clearly seen that an increase in Winkler and Pasternak 
foundation parameters leads to an increment in the fundamental frequencies. Also, it is 
observed that the natural frequencies evaluated by MCST are larger than those predicted by 
CT. Moreover, it can be concluded from the tables that the rotary inertia term has a decreasing 
effect on the frequency values. 
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Fig. 2. Variation of the frequency ratio (with rotary inertia/without rotary inertia) with respect 

to a/h and mod number (Kw=KG=10, a=b, l=h) 
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In Fig. 2, variation of the frequency ratio (with rotary inertia/without rotary inertia) is 

depicted for different a/h and mode number. It is observed that the ratio is almost equal to one 
for larger values of a/h while it tends to decrease by decreasing the length-to-thickness ratio. 
Also, it is found from the figure that the divergence between the frequencies is more 
considerable for greater mode numbers. 
 
6. Conclusions 
 
Effect of rotary inertia on the size-dependent free vibration analysis of embedded single-
layered graphene sheets is investigated via modified couple stress theory. Governing 
differential equations and related boundary conditions in motion are derived with the aid of 
Hamilton’s principle on the basis of Kirchhoff plate theory. Also, the interactions between the 
surrounding elastic medium and graphene sheet are simulated by Pasternak elastic foundation 
model. Influences of additional material length scale parameter, mode number, elastic 
foundation and rotary inertia on the natural frequencies are investigated in detail. It is 
concluded from the obtained results that the rotary inertia term has a decreasing effect on the 
natural frequency values of graphene sheets. In addition, it can be interpreted that this effect is 
more prominent for smaller a/h ratio and higher modes. 
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