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Abstract 

This study aims to derive approximate closed-form solutions for critical loads of straight beams with variable 

cross-section. The governing equations are derived for purely flexible beam for small displacements and rotation 

and turned into non-dimensional form. Approximate solutions to the set of equations for stability problems are 

searched by Variational Iteration Method with Generalized Lagrange Multipliers. It turns out that highly 

accurate approximate buckling loads for cantilever beams with constant or variable section can be obtained in 

closed-form. Many novel closed-form solutions for critical load of such structures, which may serve as 

benchmark solutions, are presented. 

Keywords: beam theory, closed-form solutions, variational iteration method, buckling. 

1. Introduction 

Closed-form solutions are of practical importance to engineers and designers as they help to 

better understand the contributions of different physical parameters involved in a problem to 

the output, which may be static deflection, state of stress at a point, natural frequency, etc. 

This is important as it paves the way to essential elements of modern engineering, such as of 

optimum design and monitoring of structures. In addition, closed-form solutions may serve as 

benchmark solutions to numerical methods which are frequently used in modern time. 

Unfortunately, it is possible to obtain exact solutions in closed-form only for very special 

cases.  

Not surprisingly, majority of closed-form solutions are presented in the literature for one 

dimensional structures [1], which is a reduced representation of 3-dimensional continua under 

reasonable assumptions and simplifications [2, 3]. There are, of course, almost countless 

contributions on the field of mechanics of beam-like structures since the middle of 18th 

century, but reviewing the entire bibliography would be out of the scope of this study. Rather, 

dedicated readers are kindly referred to the monographs by Love [3] and Timoshenko [4], to 

have a better insight about especially early works on this subject, which eventually formed the 

basis of structural engineering. 
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Earliest investigation on the buckling of columns is due to Euler [5,6]. Without being 

exhaustive, one may quote Engesser [7], Dinnik [8], and Duncan [9] as other early 

contributors in the field. Moving on to the more recent investigations, one may quote 

contributions by Elishakoff and his co-workers [1, 10-14] concerning semi-inverse solutions 

for buckling of straight beams with continuously varying bending rigidity. These solutions 

make sense considering the introduction of functionally graded materials [15], and advances 

in their manufacturing [16]. Indeed, variation of bending rigidity along the beam axis may be 

due to smooth variation of cross-section, functional grading of the material, or both. 

Nevertheless, solution of a direct problem in closed-form, i.e. determination of critical load 

for a known material property and geometry, is still a challenging one. Yet, there are valuable 

contributions in the modern literature, such as the ones by Ruta et al. [17, 18], based on a one-

dimensional model for thin-walled beams [19], which provides exact solution to critical loads 

in closed-form, by Gupta et al. [20] for post-buckling behavior of laminated beams, Mercan 

and Civalek [21] for critical load of nanobeams, and Abbondanza et al. [22] for vibration 

frequencies and buckling loads of nanobeams. In addition, there are numerous studies which 

focus on numerical solutions of such problems, which ensures required accuracy for 

engineering applications when tackled the numerical problems, such as locking, but lack 

generality as they require the numerical values of the parameters of the problem. Instead, an 

approximate solution is aimed here. For this purpose, Variational Iteration Method (VIM), 

which has been shown to be a very simple and effective semi-analytical technique, is utilized. 

This method is developed by He [23-25], basically for solutions of non-linear problems. 

Reviews and more detailed explanations about the method can be seen in [26,27]. Since the 

initiation of the method, there have been many modifications and improvements introduced to 

it [28-32], for the reviews of which we refer to the note by He [33]. VIM is recently used for 

solutions of many different structural problems, see for example [34-38]. 

In this contribution, the aim is to present some approximate, yet accurate, solutions for 

buckling loads of straight beams of variable section. For this purpose, the system of equations 

is briefly derived and turned into non-dimensional form. As the solution technique, 

Variational Iteration Method with Generalized Lagrange Multiplier, which has been shown 

recently to be a very neat procedure for linear differential equation systems, is used. Amongst 

the classical boundary conditions, we focus on cantilevered beams as it is the only case that 

one can obtain real roots of the characteristic equation in closed-form. This may seem 

limiting, however, cantilevered beams of variable section may be an accurate model for many 

practical engineering problems. Moreover, being in closed-form, presented results may be 

used for benchmark purposes for different approximate and numerical techniques. To this 

aim, considering different variations of the cross-section, some new closed-form solutions for 

cantilevered beams are presented. 

2. Governing Equations 

Consider copies of a plane region, 2 , attached orthogonally to a line of length L, 
0C , 

through their centroids. The region occupied by this construction represents the reference 

configuration of the beam, 0B , for parameterization of which a Cartesian coordinate system, 

 , ,x y z , with base vectors  , ,i j k  is introduced. With proper selection of an origin, it is 

assumed that 
0C  is along k, and, therefore,   lies on coordinate plane  ,i j , which yields 
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 0 0,B L . Furthermore, principal axes of   is assumed to be coincident with axes x and 

y, for simplicity in constitutive modelling. 

Current configuration of the beam, B, is described by regular vector field     z z r k u  

which represents the positions of each point, C, initially on 
0C  and with coordinate z, and an 

orthogonal tensor  zR , providing the rotation of cross-sections, assumed to remain planar. 

The expressions of finite deformation measures in current configuration [17,18], 

         
 

 , ,T
d zd

z z z z z z
dz dz

   
R

ε k u R k χ R   (1) 

where  zε  is the difference between the tangents of C and 
0C , pushed-forward from 0B  to 

B, and  zχ  presents the curvature of C. 

The balance equations in actual configuration reads [2, 18], 

 
 

 
 

      0, 0
d z d z d

z z z z z
dz dz dz

      
F M

p k u F m   (2) 

where      , ,z z zF M p  and  zm  stand for internal force, internal couple, distributed 

external force and distributed external couple, respectively. 

The analysis herein is limited such that the curve C remains at  ,j k  plane. Then,  

 

,
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x
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 



 

 
 

    
   

 

 

 



u j k

R

ε j k

χ j k

F j k

M i

  (3) 

where the dependence of each field on z is omitted for simplicity of the notation. 
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Let us assume vanishing of the axial strain and shear strain, and a linear relation between the 

curvature of the deformed beam axis and the bending couple in the form, 

      
 

 
0, 0,

x

z y x

x

M z
z z z

EI z
       (4) 

where E is the modulus of elasticity of the material and Ix is the moment of inertia of the 

cross-sections about the axis x. The bending rigidity     0x xEI z EI f z  is assumed to 

depend on the position along the axis, z, which may be due to variation of material properties, 

or smooth variation of cross-sectional dimensions, or both. 

Let us further assume that 0B  is pre-loaded by what results an axial compressive force  N z , 

which is assumed to be known and may be due to self-weight or an external action. 

The system of differential equation for determination of configuration B which is assumed to 

be in the neighborhood of  0B , thus linearized, by static perturbation technique [17, 18, 39], 

reads, 

 

0,

0, ,

x xz
x

x

y x
y x

d Mdu

dz dz EI

dF dM
F N

dz dz


  

  

  (5) 

where, superimposed bar denotes the first order derivative of indicated field with respect to an 

evolution parameter, hence the first order increments to the fields given in (3) [17, 18, 39]. 

Equation system (5) is identical to that given in [40]. With the following non-dimensional 

quantities, 

 

2 2

0 0

0

, ,

, , ,

y

x x

x z
x

x

F Lz NL
Z T P

L EI EI

M L u
M U

EI L


  

   

  (6) 

System of equations given in (6) may be represented in matrix form as below. 
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   

   

T
,

0 1 0 0

1
0 0 0

.

0 0 0 0

0 1 0

d
Z U T M

dZ

f ZZ

P

 

 
 
 
 
 
 
  

y
A y y

A

  (7) 

with solution, 

    0 0,Z Z Zy Y y   (8) 

where  0,Z ZY  is the matricant of system (7)1 about an initial point Z0, and  0Zy  lists the 

initial values of field functions [41]. Note that when the coefficients matrix A consists of 

constant components, matricant of Eq. (7)1 is given by matrix exponential of zA, which may 

be obtained exactly by Cayley-Hamilton theorem [42], or approximately by power series 

expansion. If the matrix A can be reduced into a triangular form, then again an exact solution 

may be found to Eq.(7) by successive integrations of the equations [43], similar to solution of 

an algebraic equation system by Gauss elimination method. Neither of these conditions hold 

in our case. Even in such situations, it might be possible to find an exact solution to the 

system of equations which requires a commutativity between A and matrix exponential of its 

integral. This is a very restrictive condition in practical point of view hence, search for 

approximate solution to Eq. (7) becomes inevitable.  

3. Variational Iteration Method 

A kind of VIM with a suitably modified Lagrange Multipliers for system of differential 

equations proposed by Altintan and Ugur [32] will be followed here. Even if the essence of 

the method is to tackle the nonlinear problems, here we will apply restricted variation to the 

part of matrix A which makes an exact solution to Eq.(7) impossible.  

      
 

   
0

1 1 2;

Z

k

k k k k

Z

d
Z Z Z L L d

d


   




 
    

 


y
y y Λ y y   (9) 

where subscript k denotes the order of approximation, and superimposed tilde denotes the 

variation of the indicated field is restricted. 1L  and 2L  are linear operators defined as below. 

 
1 1 2 2, ,L L y A y y A y   (10) 
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where, 

  
1 2

0 1 0 0
0 0 0 0

1
0 0 0 0 0 0 0

, .
0 0 0 0

0 0 0 0
0 0 0

0 0 1 0

f Z

P

 
  
  
   
  
     

 

A A   (11) 

With those definitions at hand, the so-called Generalized Lagrange Multiplier in Eq. (9), 

 ;ZΛ  becomes [32], 

    ; ,Z Z  Λ Ψ   (12) 

Where  ,ZΨ  is the matricant of system 1d d y A y , about Z. Properties of matricant 

yields [32, 42], 

      1

0 0; , , .Z Z Z Z Λ Ψ Ψ   (13) 

A recent contribution by Yildirim [44] provides the components of matricant, also known as 

fundamental matrix or transfer matrix, for constant cross-section.  

If (k+1)th approximation of y is written similar to Eq. (8), 

      1 1 0 0, ,k kZ Z Z Z y Y y   (14) 

where, with the help of Eqs. (7, 12, 13),  

        
 

 
0

01

1 0 0 0 0

,
, , , , .

Z

k

k k

Z

d Z
Z Z Z Z Z Z d

d


   







 
   

 


Y
Y Y Ψ Ψ A   (15) 

Once an initial approximation to the matricant,  0 0,Z ZY , is made, successive iterations 

provided in Eq. (15) will yield the approximate matricant of the system (7)1. Then, it is a 

matter of solving the initial values  0Zy , or looking for mathematical requirements for a 

non-trivial solution of them. In our case the latter holds true. These conditions for classical 

boundary conditions are listed below. 
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   

   

   

   

   

   

33, 34,

43, 44,

12, 13,

42, 43,

13, 14,

23, 24,

0 0, 0 0,
0

1 0, 1 0.

0 0, 0 0,
0

1 0, 1 0.

0 0, 0 0,
0

1 0, 1 0.

k k

k k

k k

k k

k k

k k

U Y Y
Clamped free

Y YT M

U M Y Y
Pinned pinned

Y YU M

U Y Y
Clamped clamped

Y YU







 
 

 

 
 

 

 
 

 

  (16) 

where 
,ij kY  denote the components of kth order of approximation to matricant at ith row and jth 

column. It turns out it is possible to find closed form solutions only for clamped-free column 

as that is the only case yielding a characteristic equation of third order with real roots.  

In the next section, we will search for closed form expressions exploiting Eq. (15) for 

different variations of cross-section. 

4. Closed-Form Solutions 

As the initial approximation of the matricant, we will use the solution of (7)1 for A2 = 0, that 

is, the elastic curve in the absence of pre-loads: 

    0 0 0, , .Z Z Z ZY Ψ   (17) 

A suitable selection of the initial point is Z0 = 0, for the simplicity of solutions. The explicit 

expressions of matricant components at each iteration are provided for specific variations of 

cross-section and pre-load in the following sub-sections. 

4.1 Polynomial Bending Rigidity 

Here we present some solutions bending rigidity given by a polynomial function specified as 

below. 

     
3

1 21 1f Z Z Z      (18) 

This variation of the bending rigidity may be interpreted as that of a rectangular cross-section 

with linearly varying height and width, and has been considered recently in [45]. 
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For such a variation of bending rigidity, components of the zeroth order of approximation to 

matricant are listed below. 

 

1 2 1 2 1 2 1 1 2 2

3

1 2 2

2

1

11,0 12,0

13,

2 1 2 2 1 1 2 1 1 1 2 2

14,0

1

0

( - )( ( + )-2)-2( -1)( -1) ln(1- )+2( -1)( -1) ln(1- )
,

2( - ) ( -1)

( - ) (3 -2)- 2 ( -1)( -1) ln(1- )+2 ( -1)( -1) ln(1-

1

)

-

, ,

2(

Y Y Z

Z Z Z Z Z Z Z
Y

Z

Z

Z Z Z Z Z Z Z Z Z
Y

         

  

            












 



3

2 2

21,0 22,0

,
) ( -1)

0, 0,

Z

Y Y

 

 

  

(19) 

 

2 2 2 2

1 2 1 1 2 2 2 1 2 1 2 2 2

24,0 3 2

1 2 2

31,0 3

2 2 2

1 2 1 1 2 2 1 2 1 1 2 2

23,0 3 2

1 2 2

2 ( -1) ln(1- ) 2 ( -1) ln(1- ) ( - )( (3 - 4) (2 - ))
,

2( - ) ( -1)

0,

( - ) 2 + + 2 ( -1) ln(1- )+2 ( -1) ln(1- )
,

2( - ) ( -1)

Z Z Z Z Z Z Z
Y

Z

Y Y

Z Z Z Z Z Z Z
Y

Z

            

  

           

  

   




 


2,0 33,0 34,0

41,0 42,0 43,0 44,0

0, 1, 0

0, 0, , 1

Y Y

Y Y Y Z Y

  

   

 

We list below the characteristic equations of different orders of approximations for clamped-

free column with polynomial bending rigidity. 

  3 2

2 1 2 1 2 1 2 2 1 1 2 1 22( -1)( - ) ( - ) (2-3 )+ 2( -1) ( -1)(ln(1- )-ln(1- )1: 0)k P             

  (20) 

  

  

2 5 2 2

2 1 2 1 1 2 1 2 1 2

3 2 2

2 1 2 1 2 2 1 2 1 2 1 2 2

2

2 2 2 1 2 1 2 1 1 2

2

2 1

2

12( -1) ( - ) 12( -1) ( -1) ( - ) (ln(1- )- ln(1- ))

-6( -1)( - ) (3 -2)- ( - ) (16 -15)-2 ( ( +9)-9)

+ ((9-2 ) -6) 6( -1)( -1) 2 +( -3) - + (l

:

n(1 )

k

P

P

         

            

           

  



 

 

 2- ln(1- )) 0  


 

 (21) 
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  



3 7 3 4

2 1 2 1 1 2 1 2 1 2

2 5 2 2 3 2

2 1 2 1 2 2 2 1 2 1 2

2 2

1 2 2 2 2 2 1 2 1 2 1 2

144( -1) ( - ) 144( -1) ( -1) ( - ) (ln(1- )- log(1- ))

-72( -1) ( - ) (3 -2)- 12( -1)( - ) (16 -15)

-2 ( ( +9)-9)+ ((9-2 ) -6) 72( -1)( -1) ( 2
3

) +
:

-

P

P

k

         

          

           

 















  

 



1 1

2 3 3 2

2 2 1 2 2 1 1 2 1 2 2

3

1 2 2 2 2 2 2 2 1 2 1

2

1 2 1 2 2 2 2 1

( -3)

- + ln(1 )- ln(1- ) ( - ) (41 -40)+ ( (65 -224)+156)

+ ( ((28-43 ) +138)-120)+ ( ((56-3 ) -114)+60) 12( -1)( -1)

+ (6 -8)+ (10-9 )+ ((7-2 ) -5) ln(1 )- l

P

 

          

          

       

  
 



 2n(1- ) 0  


  (22) 

Solutions of Eqs.(20-22) provide the critical buckling loads at kth order, 
,cr kP . 

 

 

3

2 1 2
,1

2 1
1 2 1 2 2 1 1 2

2

2( -1)( - )

-1
( - ) (2-3 )+ 2( -1) ( -1) ln

-1

crP
  


       



 
 

  
 

  (23) 

 
 2 2 2

2 2 2 2 2 2 2 2 2

21 ,

2

2

2 2 2 2

( -1) 3 - 3 ( ( (3 +8)-36)+24)+72( -1) ln(1- )

( (2 -9)+6)+6( -1) ln(1- )
0 crP

        

 


  
      (24) 

 
2

1

1 1 1 1 1 1

,2

1

2

1 1

2

( -1)(6 +ln(1- )(-4 +( -1) ln(1- )+6)) -( -1) ln(1- )
0 crP



    


   
     (25) 

 

 

   



2 4
2 2 4 22 2

2 2 2 2 2 2 2
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c

 
      

     



   

 


   













 (26) 
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+2 -4 +3 ln 1 )
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c c
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
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

  (27) 

  3 2 2

2 2 2 2 21 2 23 -56 +114 -60 +12(2 -5)( -1) ln(1- )c          (28) 
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 (29) 

    2 3 2

1 1 1 1 1 1 13 -10 +39 -30 +3 -9 +18 -10 ln(1- )c          (30) 
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

 
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5 4 3 2
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1/2

1

) 43 -848 +3207 -4940

+3438 -900

    

 


  (31) 

Note that Eqs.(23-27) are the lowest roots of the characteristic equations for 
1 21 , 0   . 

Table 1. Critical loads for variable height (α1 = 0) 

α2 
Present 

[45] 
Pcr,1 Pcr,2 Pcr,3 

0 2 2.536 2.465 2.467 

0.2 1.6 2.101 2.023 2.023 

0.4 1.2 1.660 1.565 1.569 

0.6 0.8 1.218 1.093 1.098 

0.8 0.4 - 0.588 0.597 

Numerical results are given for constant width, variable height and constant height, variable 

width, in Table 1 and Table 2, respectively, from which one may see their convergence and 

accuracy. Very simple first order approximations of the critical loads seem to be impractical, 

while third order solutions are very accurate. The simplicity versus the relatively low 

accuracy of second order approximations may be debated; but the effects of geometrical 

parameters on the critical load are well represented. On the other hand, solution of second 
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order approximation yields an imaginary root for α1 = 0, α2 = 0.8, which is possibly due to 

inability of the approximate displacement function to represent the actual mode shape. 

Table 2. Critical loads for variable width (α2 = 0) 

α1 
Present 

[45] 
Pcr,1 Pcr,2 Pcr,3 

0 2 2.536 2.465 2.467 

0.2 1.862 2.387 2.314 2.316 

0.4 1.711 2.227 2.148 2.151 

0.6 1.542 2.052 1.964 1.968 

0.8 1.339 1.855 1.747 1.752 

In case of a square cross-section, i.e. 
1 2    , 

 ,

2

1

6( 1 )

3 2
crP





 


 
   (32) 

 2

4

,

10 ( (2 7) 8) 2 5 ( 1) (4 (5 9) 15) 30

4 5
crP

     



      


   (33) 

 
2 1/3 2/3 1/3 2

,3
5 5 5

1/3

5

2( 1 ) ( 128.076 35 1.913 146.372 28 29.274 )

( 7 6 )
crP

c

c c c   



       





   (34) 

 
2 3 2 3 4

2

5

3 4

(6360 1904 7(385 10 15435 54180 72600 43904 10080 )

6 (1190 10 15435 54180 72600 43904 10080 ))

c      

    

      

   



 

  (35) 

Table 3. Critical loads of column with square cross-section (α1 = α2 = α) 

α 
Present 

[45] 
Pcr,1 Pcr,2 Pcr,3 

0 2 2.536 2.465 2.467 

0.2 1.477 1.963 1.880 1.884 

0.4 0.982 1.406 1.304 1.309 

0.6 0.533 0.894 0.750 0.757 

0.8 0.171 - 0.259 0.265 

Critical loads of different orders of approximations for variable square section is presented in 

Table 3. The outlook is very similar to first two tables: first order solutions are not accurate 

while the third order solutions are in a very good agreement with the literature. Second order 

solution in case of a very sharp change in cross-section results an imaginary root, again 

possibly due to inadequate prediction of the mode shape. This situation may be seen as a 
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drawback but the use of classical beam theories for structures with rapid change of section can 

also be debated. 

4.2 Exponential Bending Rigidity 

Here the bending rigidity is assumed to vary exponentially, as it is common in the literature 

[34, 46]. 

   Zf Z e    (36) 

For such a variation of bending rigidity, components of the zeroth order of approximation to 

matricant are listed below. 
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 
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

  
  

 

  





  (37) 

We list below the characteristic equations of different orders of approximations for clamped-

free column with exponential bending rigidity. 

  2 11: 0e Pk        (38) 

    2 2 2 44 ( 12: ) 5 4 1 4 02e e P Pk e                  (39) 
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9 4 ( 1) 2 5 36 1 3
3:

06

e e e P

e e P P
k

e

  

  

  

     

     

        



  (40) 

Solutions of Eqs.(38-40) provide the critical buckling loads at kth order, 
,cr kP . 

 
2

,1
1

cr
e

P




 



  (41) 

 
2
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(1 ) (6 2 ( 3 ) (4 ))
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e e
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 



   


      



  (42) 
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  (43) 

where, 

  2 3
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 (45) 

The numerical results for different geometries with comparison are given in Table 4. Very 

similar to the previous problem, convergence of the numerical results with the order of 

approximations are apparent. Also, agreement of the results with the literature are 

encouraging. 

Table 4.  Critical loads of clamped-free column with exponentially varying bending rigidity 

α 
Present 

[46] 
Pcr,1 Pcr,2 Pcr,3 

0 2 2.536 2.465 2.467 

0.1 1.934 2.464 2.392 2.394 

0.5 1.681 2.187 2.109 2.110 

1.0 1.392 1.861 1.778 1.782 

1.5 1.135 1.531 1.476 1.480 

2.0 0.911 1.294 1.205 1.209 

The essence and practical importance of the results provided herein is evident from the very 

good agreement of the numerical results with the existing literature. It must be noted that this 

approach to the solution of critical buckling load of columns provides very accurate closed-

form solutions by very simple integrations and determination of roots of polynomial 

equations. Classical VIM approaches to this problem may require dealing with heavy 

integrations, and consideration of higher order of approximations for convergence, which 

inevitably require numerical solution techniques to solve the characteristic equation. Indeed, it 

is reported in [34], for a very similar problem, that nine iterations are conducted, and series 

expansions of the variations of bending rigidity up to nine terms are used to obtain the 
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numerical results. Even though their results are almost overlap with the exact solutions, the 

heavy integrations and computational cost must be taken into consideration.  

5. Conclusions 

This paper aims to derive some closed-form solutions for critical loads of columns with 

variable section. To this aim, Variational Iteration Method, modified for the system of linear 

differential equations, is utilized. It is found that the solutions to the approximate 

characteristic equations of up to third order are highly accurate for cantilevered beams, while 

other boundary conditions require the consideration of higher order approximations. Hence, 

some approximate closed-form solutions are presented, for the first time, for cantilevered 

columns of variable cross-section. The accuracy and versatility of the solution procedure are 

demonstrated by comparing the results presented in the literature, and a very good agreement 

is observed. The closed-form solutions presented herein, therefore, may well be used as 

benchmark solutions for other approximate solution procedures. Further approximations by 

selecting different trial functions, which may enlarge the present investigation also to the 

other boundary conditions, are possible. In addition, even one confines oneself to the trial 

functions used herein, many other closed-form solutions to direct problem of clamped-free 

column buckling seem to be at ease. This contribution may also be interpreted as the first step 

towards the closed-form solutions of eigenvalue problems of structural elements in closed-

form, which may be used in their monitoring and identification. 

 

References 

[1] Elishakoff, I., Eigenvalues of Inhomogeneous Structures: Unusual Closed-Form 

Solutions, CRC Press, Boca Raton, 2005. 

[2] Antman, S.S., The theory of rods, pp.641-703 of Linear Theories of Elasticity and 

Thermoelasticity, Truesdell C. (ed.), Berlin, Springer, 1973. 

[3] Love, A.E.H., A Treatise on the Mathematical Theory of Elasticity, Cambridge, at the 

University press, 4th edition, 1927. 

[4] Timoshenko, S., History of Strength of Materials, McGraw-Hill, New York, 1953. 

[5] Oldfather, W.A., Ellis C.A., Brown D.M., Leonhard Euler’s Elastic Curves. Isis, 20(1), 

72-160, 1933. 

[6] Euler, L., Sur la force des callones. Memories de L’Academie des Sciences et Belles-

Letteres (Berlin) 13, 252–282, 1759. (in French) 

[7] Engesser, F., Ueber Krickfestigkeit gerader Staebe. Zeitschrift Architekten und Ingineure 

in Hannover 35, 455 (1899). (in German). 

[8] Dinnik, A.N., Design of columns of varying cross-section, Transactions of the ASME, 

Applied Mechanics, 1929. 



U. Eroglu, E. Tufekci 

173 

 

[9] Duncan, N.J., Galerkin’s method in mechanics and differential equations. Aeronautical 

Research Committee Reports and Memoranda, No. 1798, 1937. 

[10] Elishakoff, I., Pellegrini, F., Exact and effective approximate solutions of some divergent 

type non-conservative problems. Journal of Sound and Vibration, 114, 144-148, 1987. 

[11] Elishakoff, I., Pellegrini, F., Application of Bessel and Lommel functions and 

undetermined multiplier Galerkin method version for instability of non-uniform column. 

Journal of Sound and Vibration, 115, 182-186, 1987  

[12] Elishakoff, I., Pellegrini, F., Exact solution for buckling of some divergence type non-

conservative systems in terms of Bessel and Lommel functions. Computer Methods in 

Applied Mechanics and Engineering, 66, 107-119, 1988 

[13] Elishakoff, I., Inverse buckling problem for inhomogeneous columns. International 

Journal of Solids and Structures, 38(3), 457–464, 2001. 

[14] Elishakoff, I., Eisenberger, M., Delmas, A., Buckling and vibration of functionally 

graded columns sharing Duncan’s mode shape, and new cases. Structures, 5, 170–174, 

2016. 

[15] Suresh S, Mortensen A. Fundamentals of functionally graded materials. London, UK: 

IOM Communications Limited, 1998. 

[16] Mahamood, R.S., Akinlabi, E.T., Functionally Graded Materials, Springer, 2017. 

[17] Ruta, G.C., Varano, V., Pignataro, M., Rizzi N.L., A beam model for the flexural-

torsional buckling of thin-walled memberse with some applications. Thin-Walled 

Structures, 46, 816,822, 2008. 

[18] Ruta, G., Pignataro, M., Rizzi, N., A direct one-dimensional beam model for the flexural-

torsional buckling of thin-walled beams. Journal of Mechanics of Materials and 

Structures, 1(8), 1479-1496, 2006. 

[19] Tatone, A., Rizzi, N., A one-dimensional model for thin-walled beams, pp. 312–320 in 

Trends in applications of mathematics to mechanics, edited by W. ed. Schneider et al., 

Longman, Avon, 1991. 

[20] Gupta, R.K., Gunda, J.B., Janardhan, G.R., Rao, G.V., Post-buckling analysis of 

composite beams: Simple and accurate closed-form expressions. Composite Structures, 

92, 1947-1956, 2010. 

[21] Mercan, K., Civalek, O., Comparison of Small Scale Effect Theories for Buckling 

Analysis of Nanobeam. International Journal of Engineering and Applied Sciences, 

9(3), 87-97, 2016. 

[22] Abbondanza, D., Battista, D., Morabito, F., Pallante, C., Barretta, R., Luciano, R., de 

Sciarra, F.M., Ruta, G., Modulated linear dynamics of nanobeams accounting for higher 

gradient effects. International Journal of Engineering and Applied Sciences, 8(2), 1-20, 

2016. 



U. Eroglu, E. Tufekci 

174 

 

[23] He, J.H., A new approach to non-linear partial differential equations. Communications in 

Nonlinear Science and Numerical Simulation, 2, 230–235, 1997.  

[24] He, J.H., Variational iteration method for delay differential equations, Communications 

in Nonlinear Science and Numerical Simulation, 2, 235–236, 1997.  

[25] He, J.H., Variational iteration method a kind of non-linear analytical technique: some 

examples. International Journal of Nonlinear Mechanics, 34, 699–708, 1999. 

[26] He, J.H., Variational iteration method some recent results and new interpretations. 

Journal of Computational and Applied Mathematics, 207, 3–17, 2007.  

[27] He, J.H., Wu, X.H., Variational iteration method: new development and applications. 

Computers and Mathematics with Applications, 54,881–894, 2007. 

[28] Turkyilmazoglu, M., An optimal variational iteration method. Applied Mathematics 

Letters, 24(5), 762–765, 2011. 

[29] Yilmaz, E., Inc, M., Numerical simulation of the squeezing flow between two infinite 

plates by means of the modified variational iteration method with an auxiliary 

parameter. Nonlinear Science Letters A, 1, 297–306, 2010. 

[30] Hosseini, M.M., Mohyud-Din, S.T., Ghaneai H., Usman, M., Auxiliary parameter in the 

variational iteration method and its optimal determination. International Journal of 

Nonlinear Sciences and Numerical Simulation, 11(7),  495–502, 2010. 

[31] Herişanu, N., Marinca, V., A modified variational iteration method for strongly nonlinear 

problems. Nonlinear Science Letters A, 1, 183–192, 2010. 

[32] Altintan, D., Ugur, O., Generalisation of the Lagrange multipliers for variational 

iterations applied to systems of differential equations. Mathematical and Computer 

Modelling. 54, 2040-2050, 2011. 

[33] He, J.H., Notes on the optimal variational iteration method. Applied Mathematics 

Letters. 25(10), 1579-1581, 2012. 

[34] Coskun, S.B., Atay, M.T., Determination of critical buckling load for elastic columns of 

constant and variable cross-sections using variational iteration method. Computers and 

Mathematics with Applications, 58, 2260,2266, 2009. 

[35] Chen, Y., Zhang, J., Zhang, Z., Flapwise bending vibration of rotating tapered beams 

using variational iteration method. Journal of Vibration and Control, 22(15), 3384-

3395, 2016. 

[36] Eroglu, U., Large deflection analysis of planar curved beams made of functionally 

graded materials using variational iterational method. Composite Structures, 136, 204–

216, 2016. 

[37] Yun-dong, L., Yi-ren, Y., Vibration analysis of conveying fluid pipe via He’s variational 

iteration method. Applied Mathematical Modelling, 43, 409,420. 



U. Eroglu, E. Tufekci 

175 

 

[38] Eroglu, U., Tufekci, E., Small-Amplitude free vibrations of straight beams subjected to 

large displacements and rotation. Applied Mathematical Modelling, 53, 223-241, 2018. 

[39] Budiansky, B., Theory of buckling and postbuckling behavior of elastic structures, pp. 1–

65 in Advances in applied mechanics,14, Academic Press, New York, 1974. 

[40] Timoshenko, S.P., Gere, J.M., Theory of Elastic Stability. McGraw-Hill, New York, 

1961. 

[41] Pease, M.C., Methods of Matrix Algebra. Academic Press, New York, 1965. 

[42] Tufekci, E., Arpaci, A., Exact solution of in-plane vibrations of circular arches with 

account taken of axial extension, transverse shear and rotatory inertia effects. Journal of 

Sound and Vibration 209 (5):845–56, 1998. 

[43] Tufekci, E., Arpacı, A., Analytical solutions of in-plane static problems for non-uniform 

curved beams including axial and shear deformations. Structural Engineering and 

Mechanics, 22 (2):131–50, 2006. 

[44] Yildirim, V., Several Stress Resultant and Deflection Formulas for Euler-Bernoulli 

Beams under Concentrated and Generalized Power/Sinusoidal Distributed Loads, 

International Journal of Engineering and Applied Sciences, 10(2), 35-63, 2018. 

[45] Wei, D.J., Xani S.X., Zhang, Z.P., Li, X.F., Critical load for buckling of non-prismatic 

columns under self-weight and tip force. Mechanics Research Communications, 37, 

554-558- 2010. 

[46] Wang, C.M., Wang, C.Y., Reddy, J.N., Exact Solutions for Buckling of Structural 

Members. CRC Press, Boca Raton, 2005. 


