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Abstract 
 
The buckling analysis of a simply supported single walled carbon nanotube embedded in an elastic medium with 
rotationally restrained boundary conditions is presented via nonlocal elasticity theory. A Fourier sine series 
incorporated with Stokes’ transformation is employed for the simulation of single walled carbon nanotube deflections. 
The Fourier coefficients for a embedded carbon nanotube having ends with rotational restraints are obtained by the 
substitution of deflection function and its derivatives into the governing differential equation. The explicit expressions are 
derived for the critical buckling loads by using nonlocal boundary conditions in terms of rotational restraint parameters. 
A detailed parametric investigation have been carried out to study the effects of the rotational spring parameters on the 
size-dependent stability characteristics of the carbon nanotube. 
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1. Introduction 

Atomistic simulations and experimental findings have proved a significant small size effect in the 
mechanic performance of material at micro and nano scale [1-3]. The application of classical 
elasticity theories might be questionable in the theoretical analysis of nanosized structures, since 
classical continuum theories lack the accountability of the small size effects. Carbon nanotubes 
(nanobeams) have many potential applications, such as graphene transistors, solar cells, gas 
detection, diagnosis devices, ultra capacitors and ultra strength composite materials [4-5]. In 
addition, they are ultra light and are highly sensitive to its environment changes [6]. 

In the design of carbon nanotubes, it is of importance to acquire the real mechanical behaviors of 
nanotubes accurately. The application of classic continuum theory may be questionable in the 
mechanical analysis of carbon nanotubes. Classical continuum theory (classical elasticity theory) is 
material scale-free theory and this theory lacks the accountability of the small size effects. In order to 
overcome the shortcomings of classical continuum theory (classical elasticity theory),  different 
formats of higher order continuum theories such as micro-polar elasticity theory [7-9], nonlocal 
elasticity theory [10], couple stress theory [11] and the modified couple stress approach  [12,13] have 
been receiving much attention in investigating micro/nano structures. Since experiments including 
small size effects are expensive, the definition of appropriate physical models for nanobeams (carbon 
nanotubes) is a crucial issue concerning the theoretical and mathematical framework of nanosized 
structures.  
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Eringen [14] proposed the nonlocal elasticity theory in 1970s. to overcome the shortcomings of 
classical elasticity models.  This size dependent model (nonlocal elasticity theory) states that the 
stress field at a point not only depends on the strain field at that point but also on strains at all other 
points of the body. Many research works correlated to this nonlocal model have been so far 
explored to analyze the mechanical behavior of nanosized structures, see Refs. [15-24]. 

In this work, on the basis of the nonlocal elasticity theory, a new unified model is presented for the 
buckling analysis of single-walled carbon nanotubes embedded in an elastic medium with rotational 
restraints. The lateral displacement function is sought as the superposition of a Fourier sine series 
and Stokes’ transformation that is used to take care of the deformable boundary conditions 
(rotational restraints). Present eigenvalue algorithm can be degenerate to the rigid supporting 
nanostructure (simply supported, clamped-pinned, clamped-clamped) in the cases of assigning the 
proper values of rotational restraints. The remarkable convergence of the present solution have been 
repeatedly demonstrated through the numerical examples. 

2. Formulation of the problem 

According to nonlocal elasticity proposed by Eringen the constitutive equation is represented by the 
following relation  
 

 2(1 ) = ,nl l     (1) 
 
where    is the nonlocal parameter, 2 is the Laplacian operator, nl  is the nonlocal stress tensor. 

l  denotes the local tensor related to strain  
 

 ( ) ( ) : ( ),l x x x    (2) 
 
where ( )x is the fourth order tensor of elasticity. The ‘:’ symbol denotes the double dot product. The 
following equilibrium equations in terms of the lateral deflections can be written     
 

 ,dV k wwdx
  (3) 

 

 0,dM dwV p
dx dx

    (4) 

 
where p  is the in-plane axial load. kw  represents the constant of the foundation, known as Winkler's 
constant, w  denotes the lateral displacement of the carbon nanotube. The constitutive relation in 
nonlocal elasticity is given by  
 

 
2 2

.2 2
d M d wM EI
dx dx

    (5) 

 
Consequently substituting the Eqs. (1) and (2) in shear force and bending moment is written as 
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3 3
,

3 3
d w d w dw dwV EI p k pw dx dxdx dx


 
     
  

 (6) 

 

 
2 2

.
2 2

d w d wM EI p k wwdx dx

 
    
  

 (7) 

 
Further considering Eqs (6) and (7), the fourth order governing differential equation of a single 
walled carbon nanotube embedded in elastic medium is given by [25,26] 

 

 

4 2 2 4
0.4 2 2 4

d w d w d w d wEI p k p k ww wdx dx dx dx
       (8) 

 
In the case of the deformable boundary conditions, the analytical solution of Eq. (8) is difficult to 
obtain, so Fourier series expansion together with Stokes transformation will be adopted in this work 
for the solution of Eq. (8). The displacement function ( )w x is described in three separate regions, two 
for boundary points and the other for the intermediate places between the simply supported ends with 
rotational restraints: 
 

 ( ) = ,0w x 
                    

0,=x  (9) 
 

 ( ) = ,w x L                     
,=x L  (10) 

 

 ( ) = sin( )
0

w x T xm mm




                     

,0 x L   (11) 

 
where 
 

 .=m
m
L
  (12) 

 
The coefficient (Tm ) in Eq. (11) can be written as; 
 

 
0

2= ( )sin( ) .m

L
mT w x x dxL   (13) 

 

 
 Figure 1: A simply supported carbon nanotube embedded in elastic medium with rotational 

restraints 
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The first derivative of Eq. (11) yields 
 

 
=1

'( ) = cos( ).mm m
m

Tw x x 


  (14) 

 
Eq. (14) can be defined as a Fourier cosine series: 
 

 0

=1
'( ) = cos( ).m m

m

f
fw x xL 


  (15) 

 
The coefficients ( 0 , mf f ) in Eq. (15) are given by 
 

 0 0
'2 2= ( ) = ( ) (0) ,

L
wf x dx w L wL L

    (16) 

 

 
0

'2= ( )cos( )      ( =1,2 ).
L

m mf w x x dx mL    (17) 

 
Using integration by parts, we get; 
 

 
0 0

2 2= ( )cos( ) ( )sin( ) ,
LL

m m m mf ww x x x x dx
L L

        
   (18) 

 

 .2= ( 1) ( ) (0) m
m

m mTf w L w
L

      (19) 

 
The above transformation procedure is known as Stokes’ transformation. Then, the first derivative of 
lateral deflection function is obtained as follows: 
 

    00

=1
.

2 ( 1)( ) = cos
m

LL
m m m

m
Tdw x x

dx L L
    

  
 
  
 

 
   (20) 

 
The higher order derivatives of lateral deflection function ( )w x  can be separately obtained by 
employing Stokes’ transformation as follows [24]: 
 

    2 0
2

=1
,

2 ( 1)( ) = sin
m

L
m m m m

m

d w x x TLdx
 

  
  

 
  
 

 
   (21) 

 

 
3

20 0 0
3

=1

'' '' 2(( 1) '' '') 2(( 1) )( ) = cos( )( ( )),
m m

L L L
m m m m

m

d w x x TL L Ldx
     

  
    

    (22) 
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4

20 0
4

=1
.

2(( 1) '' '') 2(( 1) )( ) = sin( )( ( ))
m m

L L
m m m m m

m

d w x x TL Ldx
   

   
    

    (23) 

 
 

The coefficient (Tm )  in Eq. (14) can be calculated from Eq. (8) in terms of 0 , L , 0 ''  and ''L  as 
follows: 
 

 
2 1

, 0 , 0 0

2 4
, ,

( ( ( 1) ) ( ( ( 1) ) '' ( 1) '')

)

2
.

(
w

w

m m m
m k L EI m L L

m
k m EI mw

P P

P PL k
T  

 

      

 

         





 (24) 

 
where 
 

 , ,
wk wP k P    (25) 

 
 , .EIP EI P    (26) 

 
The lateral deflection function ( )w x  for the buckling of a single walled carbon nanotube having no 
restraints and supports becomes 
 

 
2 1

, 0 , 0 0

2 4
, ,=1

( ( ( 1) ) ( ( ( 1) ) '' ( 1) '')

)
( )

2
(

sin( ).w

w

m m m
m k L EI m L L

k m EI mw
m

m

P P

P P
w x

L k
x 

 

      

 

 
         




  (27) 

 
While solving the governing differential equation with rigid boundary conditions researchers 
preferred differential transform method like in [26]. In this work, an attempt is made to propose a 
new analytic approach for buckling analysis of a carbon nanotube embedded in an elastic medium 
with deformable boundary conditions. 

3. Boundary conditions 

Consider a embedded single walled carbon nanotube with rotational restraints at both simply 
supported ends (see Figure 1). This model bridges the gap between simply supported and the 
clamped boundary conditions, which is of great significance for the application of the continuum 
approach to carbon nanostructures.  The following deformable boundary conditions are used, 
 

 0 0                             0 0 ''( )w x EI
x


 


       0x  , (28) 

 

 0L                             ''( )
L L

w x EI
x


 


       x L , (29) 

 
After putting the Eqs. (20) and (24) into Eqs. (28)-(29), one obtains the following two homogeneous 
equations 
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0
2 2 4 4 2 2

0
2 2 4 4 2 2

2 2

02 2 2

2 2

2 2 2

=1

=1

''

''

2(EI - P ) 1
-L  m  P  + m  (EI - P ) + k  (L  + L  m  ) 

2(EI - P ) ( 1)
-L  m  P  + m  (EI - P ) + k  (L  + L  m  ) 

0,

w

m

w
L

m

m

Lm

Lm





 
    

 
    





  
 
  
   
  

 

  




 (30) 

 

 
2 2 4 4 2 2

2 2 4 4 2 2

2 2

02 2 2

2 2

2 2 2

=1

=1

''

''

2(EI - P ) ( 1)
-L  m  P  + m  (EI - P ) + k  (L  + L  m  ) 

2(EI - P ) 1
-L  m  P  + m  (EI - P ) + k  (L  + L  m  ) 

0.

m
L

w

L

w
L

m

m

Lm

Lm





 
    

 
    





  
 
  
   
  

 

  




 (31) 

 
Eqs. (30)-(31) can be written as a matrix form 
 

 11 12 0

21 22

'' 0.''L

  
  

  
  

      
  (32) 

 
where 
 

 
2 2

0
11 2 2 2 4 2 4 2 2 2

=1

2(EI - P ) 
1 ,

-L  m  P  + m  (EI - P ) + k  (L  + L  m  ) m w

Lm 


    

 
    (33) 

 

 
2 2

0
12 2 2 2 4 2 4 2 2 2

=1

2(EI - P ) ( 1)
,

-L  m  P  + m  (EI - P ) + k  (L  + L  m  ) 

m

m w

Lm 


    

     (34) 

 

 
2 2

21 2 2 2 4 2 4 2 2 2
=1

2(EI - P ) ( 1)
,

-L  m  P  + m  (EI - P ) + k  (L  + L  m  ) 

m
L

m w

Lm 


    

     (35) 

 

 
2 2

22 2 2 2 4 2 4 2 2 2
=1

2(EI - P ) 
1 .

-L  m  P  + m  (EI - P ) + k  (L  + L  m  ) 
L

m w

Lm 


    

 
    (36) 

 
Eq. (32) is a eigenvalue problem. The critical buckling loads can be calculated by setting the 
determinant of the coefficient matrix to zero 
 

 11 12

21 22
0.

 
 

  (37) 

 
The characteristic equation can be achieved by assigning the proper values of ( 0 ) and ( L ) 
corresponding to the restrained boundary condition. 

4. Numerical results 

In this section, the embedded single walled carbon nanotube with rotational restraints for buckling is 
explored based on the nonlocal approach. With the theoretical formulation proposed in this study, 
different numerical examples are solved in this part. Firstly, accuracy and validity of the present 
mathematical approach is validated. Then, the effects of rotational spring and nonlocal parameters on 
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the buckling characteristics of single walled carbon nanotubes with rotational restraints under axial 
loading are investigated. 

 

4.1. Validity and convergence for buckling 

Prior to presentation of numerical results of the critical buckling loads, let us examine the accuracy 
of the method suggested here when applied to three special case of the physical model presented in 
this study, in which there is no elastic foundation. Theoretically, there are infinite terms of Fourier 
sine series. However, in the practical calculation, only finite terms are taken into account and the 
Fourier sine series should be truncated.  Therefore, a convergence check study  is of great importance 
in checking the convergence of the expansion sine series. Table 1, 2 and 3 list the critical buckling 
loads for the nanotubes under simply supported, clamped-clamped and clamped-hinged boundary 
conditions by using Fourier series expansion (FSE). The calculated critical buckling loads are 
computed using 150 terms of infinite series. The critical buckling loads given by Senthilkumar et al. 
(2010) and Pradhan and Reddy (2011)  are also tabulated for direct comparison. The present  results 
agree very well with the solutions by Senthilkumar et al. (2010) and Pradhan and Reddy (2011) in 
which differential transform method (DTM) applied for various length and nonlocal parameter of 
nanotube. According to Tables 1, 2 and 3 present results are convergent. From these tables it is 
clearly seen that 150 terms of infinite series are sufficient to calculate the accurate results for the 
present analysis. 

Table 1. Verification of the proposed method for a simply supported carbon nanotub 
 ( 0wk  , 0 0L   ). 

Length (nm) 

P(nN)                                                          
μ=0 nm²         

P(nN)                                                          
μ=1 nm²         

P(nN)                                                          
μ=2 nm²         

P(exact) 
Ref.[25] 

P(DTM) 
Ref[26] 

P(FSE) 
Present 

P(exact) 
Ref.[25] 

P(DTM) 
Ref[26] 

P(FSE) 
Present 

P(exact) 
Ref.[25] 

P(DTM) 
Ref.[26] 

P(FSE) 
Present 

10,00 4.8447 4.8447 4.8447  4.4095  4.4095  4.4095  4.0460  4.0460  4.0460 

12,00 3.3644 3.3644 3.3644  3.1486  3.1486  3.1486  2.9588  2.9588  2.9588 

14,00 2.4718 2.4718 2.4718  2.3533  2.3533  2.3533  2.2456  2.2456  2.2456 

16,00 1.8925 1.8925 1.8925  1.8222  1.8222  1.8222  1.7569  1.7569  1.7569 

18,00 1.4953 1.4953 1.4953  1.4511  1.4511  1.4511  1.4094  1.4094  1.4094 

20,00 1.2112 1.2112 1.2112  1.1820  1.1820  1.1820  1.1542  1.1542  1.1542 

 
Table 2. Verification of the proposed method for a clamped-clamped carbon nanotube 

 ( 0wk  , 0 L     )  

Length (nm) 

P(nN)                                                          
μ=0 nm²         

P(nN)                                               
μ=1 nm²         

P(nN)                                                          
μ=2 nm²         

P(exact) 
Ref.[25] 

P(DTM) 
Ref[26] 

P(FSE) 
Present 

P(exact) 
Ref.[25] 

P(DTM) 
Ref[26] 

P(FSE) 
Present 

P(exact) 
Ref.[25] 

P(DTM) 
Ref.[26] 

P(FSE) 
Present 

10,00 19.379 19.379 19.379 13.8939 13.8939 13.8939 10.8280 10.8280 10.8280 

12,00 13.458 13.458 13.458 10.6520 10.6520 10.6520 8.6917 8.6917 8.6917 
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14,00 9.877 9.877 9.877 8.2296 8.2296 8.2296 7.0479 7.0479 7.0479 

16,00 7.469 7.469 7.569 6.5585 6.5585 6.5585 5.7854 5.7854 5.7854 

18,00 5.981 5.981 5.981 5.3375 5.3375 5.3375 4.8091 4.8091 4.8091 

20,00 4.845 4.845 4.844 4.4095 4.4095 4.4095 4.0460 4.0460 4.0460 

 
Table 3. Verification of the proposed method for a clamped-hinged carbon nanotube  

( 0wk  , 0 0  , .L   ) 

Length (nm) 

P(nN)                                                          
μ=0 nm²         

P(nN)                                                          
μ=1 nm²         

P(nN)                                                          
μ=2 nm²         

P(exact) 
Ref.[25] 

P(DTM) 
Ref[26] 

P(FSE) 
Present 

P(exact) 
Ref.[25] 

P(DTM) 
Ref[26] 

P(FSE) 
Present 

P(exact) 
Ref.[25] 

P(DTM) 
Ref.[26] 

P(FSE) 
Present 

10,00 9.8870 9.8870 9.9379 8.2295 8.2295 8.2925 7.0480 7.0480 7.1021 

12,00 6.8860 6.8860 6.9014 6.0235 6.0235 6.0721 5.3651 5.3651 5.4035 

14,00 5.0440 5.0440 5.0704 4.5744 4.5744 4.6125 4.1844 4.1844 4.2163 

16,00 3.8621 3.8621 3.8820 3.5804 3.5804 3.6109 3.3370 3.3370 3.3635 

18,00 3.0516 3.0516 3.0673 2.8730 2.8730 2.8978 2.7141 2.7141 2.7363 

20,00 2.4718 2.4718 2.4844 2.3533 2.3533 2.3739 2.2456 2.2456 2.2644 

It is observed from the Figure 2-a and Figure 3-a that when the stiffnesses of rotational springs  are 
almost zero the results are exactly match with those reported by Senthilkumar et al. (2010) and 
Pradhan and Reddy (2011)  (simply supported case).  The rotational spring constants, ( 0 , L  ),  are 
representative of how stiff the rotational spring are. Stiffer (more difficult to rotate) springs have 
higher spring constants ( 0 L     ) . It can be seen from the Figure 2-b and Figure 3-b that when 
the stiffnesses of rotational springs are large the results are match with those reported by 
Senthilkumar et al. (2010) and Pradhan and Reddy (2011)  (clamped-clamped case).  It is also seen 
Figure 2 and 3 that the small scale effects are more significant for large   values when compared 
with small ones.  

 

a) 0wk  , 0 0L                                           b) 0wk  , 0 0      

Figure 2: Nonlocal effect on the critical buckling loads for different nonlocal parameter 
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a) 0wk  , 0 0 0                                          b) 0wk  , 0 0      

Figure 3: Nonlocal effect on the critical buckling loads for different length 

4.2. Effects of the rotational restraints 

To investigate the effects of the rotational restraints on the critical buckling loads, variation of critical 
buckling loads with different nonlocal patameters are schematically plotted in Figs. 4 and 5. Based on the 
results in Figs. 4 and 5, the increasing value of the rotational restraint parameter leads to an increase in the 
magnitude of critical buckling load. As expected, the stiffening effect of rotational restraint parameter is to 
increase the critical buckling load. It is also said that the presence of elastic medium enhances the rigidity of 
the carbon nanotube and increases the critical buckling parameter of nanotube. Using the coefficient matrix 
obtained in this work, the critical buckling loads of a embedded single walled carbon nanotube with different  
boundary conditions can be easily computed. This matrix including rotational restraint parameters can be 
useful in theoretical investigation, that leads to determinant calculation of  a 2 2  matrix. 

 

 

a) 0wk                                                              b) 20.01 / /wk nN nm nm  

Figure 4: Effect of rotational restraints on the critical buckling loads for L=18 nm 
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a) 0wk                                                              b) 20.01 / /wk nN nm nm  

Figure 5: Effect of rotational restraints on the critical buckling loads for L=14 nm 

5. Conclusions 

In present work, the buckling analysis of elastically restrained embedded single walled carbon 
nanotube under axial compression load is researched.  Winkler elastic foundation approach is used to 
simulate the interaction between single walled carbon nanotube and elastic medium. The effects of 
axial compression load, small size and surrounding elastic medium are taken into account at the same 
time. A coefficient matrix including rotational restraint parameters is obtained with the aid of 
applying Stokes’ transformation to corresponding nonlocal boundary conditions. Numerical studies 
are performed to indicate influences of material scale, spring and Winkler parameters on the critical 
buckling loads. 
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