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Abstract 

This paper analyzes the thermo-vibration response of a graphene sheet excited with a uniform harmonic The 

problem is here tackled with a novel approach combined with a nonlocal strain gradient theory (NSGT), in 

order to include the size-dependence and the nonlocality effect on impacts. Simply-supported plates are here 

studied analytically, according to the Navier’s method. Thus, the thermo-forced vibration equations of the 

problem are here written and solved numerically for graphene sheets. The accuracy of the proposed theory is 

checked by means of several comparative evaluations with respect to the available results from literature. 

Another key aspect of the works is the sensitivity of the thermo-mechanical response of the plate structures to 

different thermal and mechanical input parameters. This could be of great interest for design purposes for many 

engineering applications, including nanoelectromechanical systems (NEMS), biosensors, piezoelectric devices, 

biomechanical tissues, among others.   

Keywords: Thermo-forced vibrations; A novel approach; Nonlocal theory of strain gradient 

1. Introduction 

Due to large variety of applications of graphene for many electronic components at the 

nanoscale, many studies in the literature on graphene materials have enhanced the 

development of lower-volume and high-speed electronic components. Graphene exhibits 

some physical properties usually not visible at a nanoscale level, namely, the high flexibility 

[1], the high thermal-mechanical resistance and elastic modulus [2]. More recently, an 

increased attention has been paid to graphene-based semiconductor photocatalysts [3], [4]. A 

graphene material is usually classified by means of a number of stacking layers, monolayer or 

multi-layer [5]. The use of a single-layer graphene nanoplate cannot only be a high-quality 

two-dimensional photocatalyst backup, but also can be a two-dimensional current circuit with 

a potentially significant potential for full redox and electrical properties [3]. To understand the 

main properties of single-layer graphene sheets, different works in literature have studied their 

mechanical and physical behavior. Among them, Ebrahimi and Barati [6] investigated the 

damped frequencies of nanoplates, according to a modified higher-order plate approach 
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combined with a general NSGT. The differential quadrature (DQ) technique has been applied 

to get numerical outcomes for simple edges. Radic and Jeremic [7] investigated the nonlocal 

stability of bi-layered nano sheets resting on a polymer foundation under in-plane thermal 

forces. Malikan et al. [8] employed the DQ technique to examine the stability of bi-layered 

nano sheets exposed to in-plane thermal and shear forces bridged on the polymer substrate. In 

the additional works by Malikan [9],[10], the author studied a laminated plate with graphene 

covering, subjected to in-plane mechanical forces, based on a refined couple stress theory [9], 

as well as the stability of nanoplates compressed nonuniformly [10]. The stability of 

nanoplates embedded on a polymer substrate was also analyzed by Shahsavari et al. [11] in a 

hygrothermal environment, while applying different NSGTs. Additional applications of 

nonlocal methods can be found in literature for stability problems of graphene sheets in 

thermal environment [12], or frequency problems of nano sheets under axial magnetic forces 

[13], nonlinear natural frequencies of beams made of graded materials reinforced with 

nanoplatelets [14]. Moreover, Gholami and Ansari [15] studied the nonlinear vibration of 

composite rectangular plates reinforced with graphene platelets, through the application of the 

third-order shear deformation model. Further relevant works on the topic can be found in [16-

51], where different nanostructures have been considered for varying conditions.  

Differently from the available literature on the topic, here we propose a refined plate approach 

with a reduced number of variables in comparison with the first-order shear deformation 

theory. The nanoplate is excited uniformly and harmonically under a transverse load. To 

model the thermo-vibration response, the nanoplate is considered in a thermal environment. 

The nonlocal reaction between atoms is here analyzed trough a nonlocal elasticity theory, 

whereby the mechanical behavior at a microscale and nanoscale accounts for the size-

dependence of impacts and stiffness, in agreement with experimental evidences. Hence, the 

microstructural problem is here tackled with a modified couple stress method, whereas the 

nanostructural one is here studied accounting for the second order strain gradient term. A 

theoretical procedure is here proposed for the study of the thermomechanical behavior of 

simply supported nanoplates, while exploring the accuracy of the method and the sensitivity 

of the response to different input parameters.  

2. Mathematical modeling 

Fig. 1a shows an idealized and realistic model for graphene nanoplates. The plate is 

characterized by a length Lx, width Ly and thickness h in a Cartesian coordinate system, and it 

is pressured transversely by a uniform dynamic force in a thermal environment. More details 

about the dynamic force acting transversely on the body are depicted in Fig. 1b [52]. A novel 

plate model is here proposed, which assumes the following displacement field [53-59] 
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Fig.1a. Graphene nanoplate subjected to thermal environment in 3D Cartesian coordinate system 

 
Fig.1b. The dynamic load acted harmonically and uniformly 

As far as the Hamilton’s approach is concerned, the potential energy of the model, V, is 

defined as [60]  

  
0

0

t

V S T dt     (2) 

where δΩ is the variation of the external work, δT refers to the variation of the kinetic energy 

and δS is the variation of the strain energy. This last contribution is computed as 

 0ij ij

v

S dV     (3) 

Eq. (1) is substituted in the nonlinear Lagrangian strain filed, which leads to [58] 
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Furthermore, the kinetic energy is defined as [52, 60] 
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whereas its variational form reads as follows 
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The numerical terms in the Eq. (6) denote the mass moments of inertia, namely [52, 60] 
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Thus, the governing equations of the problem read as follows 
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where Ni, Qi, and Mi (i= x, y, xy) denote the stress resultants, in terms of axial forces, shear 

forces, and moments. Constants Dij (i, j = 1, 2, and 6) and H44 are described by 
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where ν is the Poisson′s ratio, E is the Young’s modulus, and G is the shear modulus for 

isotropic graphene sheets. Some detail about the NSGT, here applied for the theoretical study, 

is presented in what follows [52, 58] 
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where, μ0 and μ1 refer to lower and higher-order nonlocal parameters, (l) is the length scale 

parameter. The local stress resultants read 
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By combining Eqs. (4), (12)-(14), the stress resultants become 
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where NT is the axial load associated to the thermal environment, α is the thermal expansion 

of the graphene sheet, and ∆T=T2-T1 is the temperature variation in the thickness direction. 

Here we set a reference value for the temperature equal to T1=300K. Then, we can use of Eq. 
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(11) to re-formulate the stress resultants, in order to obtain their nonlocal strain gradient form, 

namely 
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The thermo-excited vibration equations, can be obtained with combining Eq. (16)-(20) whilst 

inserting them into Eq. (8). 

3. Analytical approach 

This section employs the Navier’s solution in order to study the behavior of simply-supported 

edges and solve the harvested equations, based on the following displacement equation [52, 

56] 
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In Eq. (21), m and n denote the half-wave numbers, W0mn is the displacement amplitude, and 

ωn refer to the natural frequencies. The transverse dynamic loading applied uniformly and 

harmonically on the structure, reads [52, 56] 
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where, qm represents the Fourier coefficient, q0 denotes the load amplitude, and ωex denotes 

the excitation frequency. The algebraic equations can be obtained by inserting Eq. (21) and 

(22) into thermo-excited vibration equations. Thus yields the following relation 

            2 2 2 2 2 2 4
0 0 1 0 11 , ,mnk r m W q x y t           (24) 

 ex

n

r



   (25) 

where, ∆r stands for the excitation-to-natural frequency ratio, kij (i, j=1, 2, 3) and mij (i, j=1, 2, 

3) refer to the stiffness and mass matrixes, respectively. After the enforcement of the null 

value to the determinant of the matrix coefficients, and after some mathematical 

manipulation, we can obtain the natural frequencies of the problem. Afterwards, by 

substituting the numerical frequencies into the thermo-excited vibration equations of the 

problem, the dynamic deflections can be found. 

3. Numerical results 

This section is devoted to the preliminary check for the accuracy of the proposed approach 

with respect to the available theories form the literature. Table 1 compares our results, based 

on a One Variable FSDT (OVFSDT), with respect to several well-known references [61-63] 

based on the molecular dynamics (MD), or a FSDT-DQM approach. As can be observed, 

growing the plate's length, makes the results nearer to the MD ones. Basically, the excellent 

agreement between our results and predictions from the literature verifies the high accuracy of 

the proposed theory. Further comparative evaluations of the results can be found in Table 2, 

with respect to a DQM and MD approach, in terms of mechanical stability of grapheme sheets 

compressed biaxially, while assuming μ=1.81nm2, ks=5/6, υ=0.16, E=1TPa. 
 
 

Table 1.  Validation for mechanical stability of graphene sheet compressed biaxially. μ=1.81nm2, 

ks=5/6, υ=0.16, E=1TPa. 

Stability load (nN/nm) 

OVFSDT 
FSDT-DQM 

[61] 

FSDT-DQM 

[62] 

MD results 

[63] 
x yL L (nm) 

1.0274 1.0749 1.0809 1.0837 4.99 

0.62151 0.6523 0.6519 0.6536 8.080 

0.43832 0.4356 0.4350 0.4331 10.77 

0.26122 0.2645 0.2639 0.2609 14.65 

0.17075 0.1751 0.1748 0.1714 18.51 

0.11963 0.1239 0.1237 0.1191 22.35 

0.08856 0.0917 0.0914 0.0889 26.22 

0.06918 0.0707 0.0705 0.0691 30.04 

0.05568 0.0561 0.0560 0.0554 33.85 

0.04488 0.0453 0.0451 0.0449 37.81 
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Table 2. Comparative evaluation of the mechanical stability of graphene sheet compressed biaxially 

compared to the FSDT-DQM [62] and MD [63]. μ=1.81nm2, ks=5/6, υ=0.16, E=1TPa. 

 

Stability load (nN/nm) 

OVFSDT 
FSDT-DQM 

[62] 
MD results [63] /x yL L  

0.52449 0.5115 0.5101 0.5 

0.56223 0.5715 0.5693 0.75 

0.64225 0.6622 0.6595 1.25 

0.75576 0.7773 0.7741 1.5 

1.0134 1.0222 1.0183 1.75 

1.1703 1.1349 1.1297 2 

 

Table 3. Mechanical properties of graphene sheets. 

 

 

 

To consider several cases of nonlocality against the transverse harmonic load, Figs. 2 and 3 

are displayed. First of all, the higher-order nonlocal parameter has been investigated with the 

help of different dynamic loading conditions. As it is observed, the dynamic deflections 

decreased for increasing higher-order nonlocalities. Fig. 3 shows the conditions of lower-

order NSGT by changing the lower-order nonlocal parameter. It is worth noticing that an 

increased value for the higher-order nonlocal parameter has an increased impact on the 

dynamic deflection, than the lower-order nonlocal parameter (please, compare the plots of 

Figs. 2 and 3) 
 

 

 

 

 

 

 

 

 

 

Fig.2. Transverse dynamic load vs. the higher-order nonlocal parameter. e0a=0.2 nm, l=0.5h, m=n=1, 

∆r=0.1, ∆T=200K, x0=y0=0.5Lx, c1=c2=Lx. 

Isotropic 

graphene sheet  

[8, 56] 

E=1 TPa, ν=0.3 

h=0.34 nm, Lx=Ly=10.2 nm,  

ρ=2250 kg/m3, α=1.1e-6K 
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Fig.3. Transverse dynamic load vs. the nonlocal parameter. e0a= e1a= ea, l=0.5h, ∆r=0.1, m=n=1, 

∆T=200K, x0=y0=0.5Lx, c1=c2=Lx. 

Fig. 4 considers a higher-order NSGT for the graphene sheet under different excitation 

frequencies, and varying input geometrical parameters. As can be observed by these figures, 

the resonance situation occurs when ∆r=1. Moreover, it is worth observing that after reaching 

the resonance condition, the dynamic deflections become smaller than those obtained before 

this resonance region. Naturally, if a large value of ∆r is assumed, the deflections cannot be 

significant, namely the system cannot have a vibrational response. It is interesting to note that 

a reduced distribution region for the transverse harmonic load, reduces the deformability of 

the structure. Furthermore, by comparing Fig. 4 and 5, we can observe that a farther distance 

of the centroid in the loaded region, yields meaningless deflections in the structure.  

 

Fig.4. Distributed loads vs. the frequency ratio. e0a= 0.2 nm, e1a= 0.4 nm, l=0.5h, q0=0.1GPa, 

∆T=200K. 



M. Malikan, R. Dimitri, F. Tornabene 

200 

 

 

Fig.5. Distributed loads vs. the frequency ratio. e0a= 0.2 nm, e1a= 0.4 nm, l=0.5h, q0=0.1GPa, 

∆T=200K. 

Fig. 6 plots the displacement response of the nanoplate vs. the temperature, while keeping 

constant the following input parameters: e0a=1nm, e1a=0.5nm, and e0a=0.5nm, e1a=1nm. 

Based on a comparative evaluation of the results, the nonlocal input parameters affect 

significantly the structural response, especially for a high temperature conditions. These 

results confirm the great impact of higher-order NSGT on the mechanical behavior of 

graphene sheets. 

 
 

Fig.6. Higher and lower-order NSGT vs. the temperature variation. l=0.5h, q0=0.05GPa, ∆r=0.1, 

m=n=1, x0=y0=0.5Lx, c1=c2=Lx. 

5. Conclusions 

This article has investigated the thermo-forced vibration of graphene nanoplates, subjected to 

a transverse dynamic loading applied both uniformly and harmonically. A new plate approach 

is here proposed to determine the equations of motion, whereas the higher-order NSGT is 
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applied to evaluate the impacts at small scales. In addition, an analytic solution is here 

employed to check for the structural response. Based on a large parametric investigation, the 

following findings can be summarized as follows: 

 The higher-order nonlocal parameter affects more significantly the structural response 

than other small scale parameters. 

 A reduced sensitivity of the dynamic deflection when using higher-order nonlocality 

factors, within a higher-order NSGT context. This sensitivity of the response is less 

remarkable when a lower-order nonlocal parameter is applied. 

 An increased value of the temperature emphasize the main differences in the structural 

results based on higher-order and lower-order nonlocal parameters. This means that, for high 

room temperatures, the higher-order nonlocal parameter play a key role. 
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